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pursue i paralll two different
nder proper subtraction.

One approach is to build a theory much like the theory of NP-
‘completeness. We do not know whether SAT s in P, but one consequence
of the fact that SAT is NP-complee i that SAT is not in P unless all NP
s ace in P. Similcly, we will thow that, though we do not know whether
4P i closed under proper subteacton, i holds that 4P s not closed Under
prope subtraction unless it is closed under al polynomiak-time computable

“The other appronch is o seck to completely characteise, in terms of
compleity clss collapses, the issuo of whther #P s closed under proper
Subtraction. In particular, we will see that #P i closed under proper sub-
tracion if snd anly if every probabiitc polynomial-time set v in fact in
unambiguons polynomial time (.4, UP = PP). This is a very dramatic cok-
Iapse, and casily mplies NP = coNP, as will be made explicit later in this
section s Theorem 5.7

The following theorem, whichis proved vin the witaess reduction tech-
nique, smultanously realizes the gosls of both the approaches discussed
above

proaches to st

whether 4P s closed

Thoorem 5.6 The following statements are quisalent:

L. #P is closed under prope subtraction.
2 §P i closed under every polynomia.time computable operatin.
3. 0P = PP,

Proof That pact 2 implies part 1 is immedinte. We will abo show that
part Limplies part 3, and that part 3 implies part 2, thereby etablihing the
theorem.

Let s show that pat 1 implies part 3. o assume that #P s losed under
prope subtraction. It cartainly suffices to show that this implies both PP C
GNP and coNP C UP, as these together yid PP C UP. Since UP C PP
holds without any sssumpton, we may then conclude UP = PP.

Let L be an asbitzary PP language. So, from the altrnate defition of
PP in Fig. A.19,there i a polynommial ¢ and a polynomiak-ime prodiate R
such that

L= (1) I = o) A Rez. )} 2 200502, 1)

Leting,if e o () = gy (1)1 and for b€ (0,1}, Rega(2,38)
Py (5,3, cle Rk i cqurion 5.1, we may without oo geerality
e tht, for ll m, it bl that (%) = 1, and we do g0, (The caee
) = 0 what we e sdeteppin here)

“Ther v an NPT that on input = goses cachy sch tht | = 1(2),
and thn st (). Thus there i a 47 foncion / s that ¢ 1. —
70a) <20 and € L s f(a) 2 20701, The function 9(z)
2900 s o . 4 function, g s a fixed polymomial and () > 1
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seducing the number of acceping paths (1., “Witnesss”) of nondetermin
st machines i diffcult, and often has sevre consequences. I i ri that
Example 5.3 makes it clear that adding, on each input, one accoptng path to
the number of sccepting patha of & machine is poseible (and indecd, I+ sasy).
Th intition of witnes Fedction says that removing one acceptng path on
every input on which the machine had & norgero mumber of ccepting path
Will not be o casy, and may not be possible. Indeed, we'l eventualy s, in
Sect. 5.3, that f one could d this—Which aftr all s ot general subtraction
but s just decrementation—some surprising comploity class collapses would
ollow.

By witnos redction we are lao refering to & vy informal and loose
techaique, which will b sed often n thia chapte. The goal of the technique
i 0 show that f  class, often #P, has some closure property that reduces
the number of witnesses, then some complsity clss collapee occurs. The
e of thetochnique, fo the case of #P, i to jump back and orth bekwen
#P functions and nondeterministic machines accepting Ianguages. Thi is
possible bacause every nondeterminisic polynomialtime macine not only
s » 4P function but b defnesan NP languags. However, beyond that,
f one can make one's #P function of & special form, then the function may
defin o language in & more restictive clsa. For xammpl, if a P function on
ach input ther computes the nteger 0 or the nteger 1, the each machine
consructing that function implictly defines o UP language (and indeed the
same UP anguage for each such machine). The general schem of the witness
Seduction technique s that give the assumption that some partcularcloure
properey holds, we wsh to prove that some callapse occurs, o5, UP = PP,
a ollows:

1. We take some st i the larger clas, .5, PP, and take the machine for
that et and (perhaps afte some normalization /manipulation) cocrce the
machine into & #P function.

2. Then we e the assumed closue to create a new #P function.

3. Then we tako that new #P function and coerce t back into & machine,
in pasticular into a machine defining o language in the smallr clas,
e8. UP.

Of course, the scheme Just desribed is an abstracted and idealized tem-
pla. Though in some case one ca se it sed i exactly the form described
Sbove—e.g, the proof of Theorem .9 —often the template has to be used
in more crenive ways. For example, in the main theorem of this secton—
our proof rogarding proper subtraction — large compleity clss collape i
piece together by lnking two smaller collsies ech of which is individually
abtained via separate uss of the above template.

This concludes out comments about the flavor of the witness reduction
technique. Now let us tur to discusing how we will approach a particular
problem, namely, Pause to Ponder 5.5. As mentioned in footnote 1, we will
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Since #P i by our assumption closed under proper subtzacton, and a5
1 and g sce both #P functions, we have that h € #P, whete

) = flz) 0 (a).

Since h is a #P function, there is an NPTM N such that on exch z, h(z)
quals the numbe of accepting paths of N(z). However, note that /() ©
9(x) = 01if z ¢ L, and f() ©9(z) > 1 z € L. Thus, viewed us an NP
‘machine, L(V) = . So ou acbiteary PP languge isin NP. Thus PP C NP.
Since PP = coPP, chis imples PP € coNP.

Sl wnder the assompion chat #P is closed undet propet subiraction,
e now seek toprove that coNP € UP. Lat L bo an abitrary coNP language.
Lt N be an NPTM accepting L. Viewing N s 8 machine defining 8 P
function £, note that 2 € L — f(s) =0 and 2 ¢ L = /() > 1. The
constant function o(x) = 1 s a #P functon. Since #P is by assumption
cloed undr proper mbrstion, h() = 96) () must s be's #P
function. However,

rel = he)=1

and
2EL s hz) =0,
So the NP machine coressponding to h proves that L & UP. Since L was an
arbitrary coNP language, coNP C UP.
‘Sumining up, we have shown that if £P s closed undet proper subtzaction
then
PP G coNP and NP C UP,

and thus, s discussed calier i the proof, we have shown that part 1 implies
part 3.

“Wo now show that part 3 implies art 2 So, assumo that UP = PP. Let
0p:N x N N be any polynomialtime computable opertion. Let { and g
e arbitrary #P functions. We will show that A(z) = op((2),o(s) i itself
o #P functon.

It s ot hard to se—and we suggest 4 an easy exerclse that the reader
verfy theso—that

()] () 2 n) € PP

and

(=) o(z) 2 n} € PP.
So the language
V= ()| (5m) € By A s +1) €5, A
() € By A (z,ms +1) € B,)

must alo be in PP, as V -truch.
(vith © denoting disjoin: nion: ¥ ©.
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Theatem 5. shows that proper subtracton s among al polynomialtime
computabl operetions,the one most resstant 1 being a closure property of
4P T it the only operation to have this distinction? I fact, it i nct. Just:
a5 there o many sets that are NP-complet, 50 also are there  variety of
polynomialtime computable operations that, ke proper subtraction, seem
deepy resistant o being closure propertos o #P. If the notion of “deeply
resistant to being closure propertes” seems ovely nformal (since either they
are or they aze o closure properties-though we note that NP ses ciher
arein P or are not i P, yt most peopl fel comfortabl inormally thiking
of SAT as an NP set that is mest unliely to be o P), then in light of
Theorem 5.6, we can simply seek polynomial-time operaions o for which one
can prove that o isa closure property of #P if an nly if all polymomiak time
computable operations are closure propertes of #P. Here, we look at just:
one other such property, namely, integer divison, L., the operation, from
Nx N to N, that i defned by a 0b = [a/b)

'Of court, an NPTM caanot have  factonsl number of accepting paths,
and thus sudying divison itslf would be diffclt. However, by studying
integor ivison, e need not addressthat problem. Yot ther s tll  problom
Left, namely, divsion by zero. Throughout this chapter,closure willn general
e defined via Deinition 5.2, Homeve, nteger divison is an exception. To
avoid problems with division by zero, we formalize this exceptional case not
by Delinition 5.2, but rather by Defiiton .8, which explcity contains
clause regarding that case.

Definition 5.8 Let F be o class of unctions from N to N. We say that F
s closed under integer division (2) if

(Vh € A€ F : (ifaln) > O/ 0 s € 7.

ahere the ) above is the integer sero (., the integer representd by he empty
sring).

Theorem 5.0 The folloving statements are equivalent:

1. P i closed under integer division

2 4P is closed under every polynomial.time computabl aperation,
35 UP=PP.

Proof Of course, part 2 trvially implies part 1. By Theorem 5.6, parts 2
and 8 are equivalnt. Thus, we need only prove that part | implics part 3
and we are done.

‘Suppose that, P i closed undor nteger divison. Let L be any PP set.
Wo sok to prove that L € UP. I s not hard to see that If € PP, then
there s an NPTM N and an ineger & > 1 such that

1. o each input 7, V(=) ha exactly 2" computtion paths,esch contain-
ing exactly [2[* binazy chojees,
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UP = PP by assumption,s0 € UP. (o wants o seethis without having
to g Torem 017, o o ooty et e vl gt
and more s Theorem 57-that UP = PP implies that UP
e s done e PP sty coniins ol e that boundedHruthtable e
to seta in PP)

Since £ and g axe #P functions, thre is  polynormial g such that, fr all
2, max{/(2), 9(2)} < 2070, Consider the NP machine, N, that on input
oasthe ellowing:

1. Nondeterministically choose an integer i, 0 < § < 210,

2. Nondeterministically choose an integer 7,0 < < 20071

3 Nondeterminisically guess a computation path of the UP machine for V
on it (z,, ). the Guesed path rlects the o simulations current
ath rejects. Ifthe guessed path accepts then nondeterministically guess
an integer £, 1< k < opl,), and aceept, (Note: If pl,) = O then
o will in this tep generate no accapting paths, as no such k can be
fenerated)

So h(z) = op(f(z),0(z)) must be & P function, since fo each z, N(z) i
an NPTM having exactly op(f(z), () acceping paths. This i s0as the V.
st i step 3 bove succeedsonly when i = £(z) nd 3 = g(x), and ven that
case succeeds on exactly one path ofthe machine for V, a that machie taclt
s UP machine. Thos,sinc op was an arbtrary polyhormiabtime operation
and { and g were abitrary # functions, we have shown that part 3 mplis
pare2 o

To help gt an ncuion a3 to how strong the collpse “UP = PP* of
Theorem 5.6 s, we state the olowing reult that shows that it implics o
huge number of collapes of mare famila complexty cases.

Theorem 5.7 The following statements are equivlent:

1 UP=PP. .
2/ UP < NP'= coP = Pl = 0P = PP = PP U PP'F PP |J

Proof UP C NP C PP. So, since PP is closed under complementation,
GNP C PP. Also, if NP = coNP then PH = NP. Thus, it UP = PP then
UP = NP = PP~ coNP = PH. Since P C PH, under our asumption
it holds that P = UP. Consider PPS¥. By Lomma 4.14, this s contained
in B by our assumprion that UP = PP it is contained in PV, which
a5 jus noted under our aseumption equals UP. So tnder our asumption
PPF = UP, and so PP = PP = GP = UP. We are now done by easy
induction, vie epented use of Lemma 414, .5, taking the cas of & “stack”
of three PP's, PP C PP C pp™* € pPPF C pPSF - UP. (Note:
by drowing o fats thatae nok hrd but tht we ave ek proven, such
s that PPUP = PP, one could give an alternate proof that docs not invoke
Lemma 414) ]
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o) <= K(r) = 0. Since the cooffiient of X* in N(X) i 1, there are at
mot d roots of . So, 1(r) = (r) for at most d values of 7. E)

6.1.4 The Permanent Function

Let 2 1 b an g, By M ) v dect st of all 5 matices
oo 2ot = o) € D) o erament o 4, et by (A
S v v, e s o o prsiions of {1y The
Gmens RS A enced by d A, a1, o o 5, 1< 15 &
e L i of A, decid b Ay, i he i coviacted om A
1 siing out he i o and the 1 o sl

Proposition .

1. For cach f & P, there xist o poynomial-time computabe functions
Ry and Ry such that,for every x € B, thefollowing o conditions hold:
« () is  square iz al of whose eniies ar nonnegatie integrs.
« 1(2) = Ral(z,prrm(Ra(2)).

2 Die problem of computing the permanent of matrics whose entrics are
nomegaive ntegers belongs o 4.

3 Let A€ My (2), for some n 22, Then

pema) = 3 pem(Auo
2

4. Let A € My(2), for some n > 1. Let m be an integr such that cach.
entry of A s in the ntervl |27 2. Then

[ ——————)

5 Let A = (a),B = (by) € Mo(2), for some n 2 1. Defne Ey) =
YA+ (1 =918 = (@i + bo(t'~3) and 1) = perm(E(s). Then
perm(4) = 1(1) and perm(B) = /(0. Alo, 1 € 2], te degre of f is
most v, and or every m €2,

perm(E(m) = f(m).

6 Lt 1 bt Bl € My @) b such tht cach niry of EG) i 0
s Fon . e e 0 i e ot o o vy of
Elyy ae v v (4™ T e s of prnE )
B e ek

Proof _For part 1, see the Biblographic Notes. To prove part 2,lt N be
the nondeterministic Turing machine that, on 1nput A = (sg) € N, for
some 1, behaves s follows:

Step 1 Foreach i, 1< ... <n, N guesss a mumber Ju 1 € 5 S
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~ (Muldivariste Polynomials) 1f / is an s-variate polynomial of total
degree t most d over a el F, then for every .2 € F*, it holds that
3+ 12) = 0, wheto for svery §,0 € § € d+ 1, % =

). (See Lemma 6.31)

To develop inteactive proo systems for P#7 (— P'F), PSPACE, and NEXP,
s some some specifc propertesof these raditional complexity clases

« P#P: Wo show that the permanent function, whichis complete fr #P,
has an interactive proof system, Lo, the permanent can bo veriied in
teracivly. The basc propercy we use is that the permanent o o matrix
can be uniquely recovered from the permanent of s minors (s part 3 of
Propositon 6.).

« PSPACE: We arithmetize the reachabilty problem on the computation
troe o a deterministic polynomiak-space Turing mackine. There are no
branches in the computation tres of & detorministic Turing machine, t0
for svery k > 1, if there s a kengeh 2 path from » configuration 4 to
 configuraton o, then there is 2 unique “middle pont” configuration 1
Such that ther i o ongeh 241 pah from  to w as wel s o length 241
path fom w to v, We will transform thi sbservation ito  squence of
verifieation

« For NEXP, wo arthmatize the computation of an exponentaltime nonde-
terminisic Turing machine by applying the tableau method. We obtain o
characteriation of sach NEXP language L: Fo svery 7, thero is » ICNF
formula ;. having exponentially many clascs over exponenially many
Variables, and € L if and only i the ormula g, s satsfiable. We devlop.
 protocol fo verifying that . issatisfible

6.1.3 A Robust Characterization of Low-Degree Univariate
Polynomials

As stated in he following lemm, low-dogree polynomils that ae difeent
from cach other cannot agreo st many points. For a ring R and o set
variables Xy, -, Xon, RIXG, .. Xp] denotes the s ofal polynoials
X\ Ki Wit couficants in .

Lemma 6.2 (The number of roots of a polynomial) Let R be o ring
without sem divicors. Let d > 1 be an integer such that i the mlipicative
aroup of R s finit, then ts o s greter tha d. Lt andg b polymomials
in RUX) of degre ot mostd that are iffrent from each other. Then (r) =
9(r) for at most d valus of r

Mulivariate polynormials have a similar propersy (se in Lomma 632 in
Sect. 6.4)

Proof Let A(X) = /(X) ~g(X). Then h s  nonzero polynomial of dogree
.0 ¢ < d. Lot be ihe cofficien of X n A(X). Since there s no zer0-
divisor in R, K(X) = h(X)/a is deined. Then, for every r € R, 1(r)
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Combining Theorem 6.4 and Tods's Thoorem, PH € P# (ase
Theorem 4.12), we leaen that every Inguag in the polynomial ieracchy
s an ineractiv proof system.

Corollary 6.5 PHCIP.

To prove Theorem 6.4, w'll devlop an interactive protocol fo the per-
manent function of nteger marces

Let L€ P#F. By parts 1 and 2 o Proposition 6.3, i s ffP-complete to
compute the permanent of matrices whose entres are nonnegative Integors
S0, wo may assume that there is a polynomialtime-bounded Turing machine
M that decides L with porm as an oracl. Since M s polynomial time-
‘bounded, ther i & polynomial p auch that fo every 7 € B+ M satises the
following two conditlons:

» Ragardles of s oracle, M on input  makes at mst (=) queries
« For each potential query A of M on input 2, dim(4) < p(z) and svery
entey of A is i the lnterval (22070, 20

We will construc an iteractive proof system (P,V) for L. Let z € E* bo
o sring whos membersip n L we are esin and n = [z, Th wrfer V
simultes M on input = determinsticlly, and ecepts o rjcts scordingly
When M s ahout o make & query A ot orace perm, nstead of making that
query 0 P,V xacutoth protoelprsented i Fig. 62, Durin the proocel,
V minain st of mtriineges pars, A = (B0, .. (B )], 0
b P b promised that for Al 1< 1 < m, perm(5,) = v, whorefor some
4321, By B € Mal2) tnd o, v € 2. AL the st of the
proocol ¥ obtain o the pover P s vas & s P e perm(A4) and
et A to (A, )] Then V interats with P to redce the dimension of the
matx cntries i A to 1. AL tha poit, since th nmber of pais [ . will
2 exced the dimenonofthe e, Uher s oy on pale (5,5) i the
st an the prover has promised that parm ), whic s th unique entry of
15 by defnition, I . 5o,V checks whather what the provr has promisd i
corec. 120,  roturns to the simulation of M sevming that perm(A4)
Olerwine, V terminate s computaton by rfecng the np =

Wo clam that his potoce witnsses that L € . To prow aue csim e
need 0 show the Fllwing

1. The protocol Is complete, L, for very € L, there exists  prover
such that V accapts 2 with probabilty at last 3 through interactions
with P.

2 The protocol s sound, e, or every = € T, and every provr P, V acoopts
= with probability at most §.

3.V can bo polynomial tim-bounded.
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Step 2 Lot x bo the foncion that s cach 1< < 1,105, N et
Cehether i3 petation of (1 ) 11 #doe it pssth et N
Tents 4 Othroise, N proces o St 3

Step 3 N ets P 1o the product P = Hyauga . N computs ¢ =
Tlog(P + 1)1,

Step & N omdsterministiclly g  string y of g . th o of
T 5 i s han 1 s Pt P s A Ouerwio, P reects
4

Let A be an input to N. Let m be the dimension of A. Note that, fo every
permutation 7 of {1, .. ,m), thee i exactly one set of guesses jy, - .
in Step 1 such that the mapping x deined by 3y, . .jn is 0. Let & be &
permtation of {1, ..} Supposs that N selects 0 5 « n Step 1. Then =
asses the st in Siep 2, 80 N enters Step 3. The number of accepting paths
N produces for o in Step 3is P, which i equal 0 [T, g S0, th total
umber of accepting computation paths of N on inpt A is perm(4). Let H
be the argest sntry of A Then H < 24 So, the product P in Step 3, if N
arves b Step 3, is ess than 2°41, 0 ¢ < nlA|. Snce n < |41, ¢ < |47 This
imples that N can be made o run i palynomial Gme.

Past 3 can be proven by routine calculation.

Past 4 holds because the abaoluce value of the permanet is bounded by

T S g S it

To prove part 5, It n, A, and B be as n the hypothesis Define E(s) =
9A+(1~)B and 1(y) = perm(E(y). For all m € Z, f(m) = perm(E(m))
In particular, £(0) = perm(B) and (1) = perm(). Note that

16 =X T (oow + b1 =9,

where x ranges over all permutationsof {1, ..,n). For all permutations =
and ll inegers i, 1€ § 1, 0o+ b1~ ) 3 v fonction o .
S0, Moo+ o1 1) i polynomial in y of degre at most .
“This il tht /(s) is & polynomial n  of dgree t most .

Part 6 holds because fo each d, 0 < d < 7, the abeolute valu of the
couficent of 1 in perm(E() is bounded by

R pr———

6.1 An Interactive Proof System for the Permanent

T the et ofthe section we prove that PP hasan ineractive prof system.
Theorem 6.4 P#7 C P
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T Send A to P and obtan from P & v w5t A (040
Step 2 (&) Lot (5,0) th unkqiocrment of A Remove (5,0) from .
) setd 1o dim().Tr = 1 then gt St 1.
) For cah 6121 < d, et By, o P and abtan rom P a value . tha
Pl pem By )
(@) Test whther v = 51 by f the et i, et =
() et A0 (B0, (B, 0] and proced 1o Step 5.
stop3 Repent (3-(5) uni 4] =
") Rermow th s two slments (B,9) and (€,) fom A,
() Let ' be o variable and m ~ dim(B)(~ dim(C)). Compute the matix
()= (€400)) € Man(zis) defned foral 5,1 5.3 € m. by

)

ghae B = () and O= (c).
(@ Send E) o 2 chain s poymomia /) € 2] thas Pl i
rem(E)
() a0 s = S0 et i, e it =
0 P € (0. 3401} e e e diotion s o
e D 505 (om0
(0 Ropena (0,5
RS s
Stap.3 Tk b i th s ey i B, the et succnds ot o
i s, W o A S o e .

v+ (1= v,

Pig

Interstive protocol for the perrnent function

6.1.5.1 Complotens of the Protocol. I order tosec why the protocel
e Complete et be an acbitracy member of L. L. b the prover hat
aways provides coreect answers {0 the querie of V. Since P vl vy
provids corcect amwee,cegrdless of the probablsic choices of V., ol e
i 62 will cceed Thi il tat V o0 2 though neractions vith B
Will fllow the computation path that M on gt would with perm s the
orale,tnd s, will accept . 5o, the prababiy tat V' on it 2 sccete
with B s the prove i 1. Thus, the protoce s complte

6.1.5.2 Soundness of the Protocol. In order o prove that the protocol i
sound, It 7 be an arbitasy element in L. Let p be the maximum probabilty
of accuptance that ¥ on input  has through interactions with any prover.
We claim that p < 3. Wo prove the claim by contradicton. Asume, o the
contrary, that p > §. Let P a prover that achieves 45 the acceptance
probabliy of V on input =

Note tha,to achievs  nonzero probabily f acceptance, P hs o provide
an incorsect answer in Step 1 of the protocel to at lesst one query that V.
produces on input . To see why, assume that P provides a corrct answer
i Step 1 of the protocel o each query that ' produces on imput . Take
an acbitrary computation path, 7, o V on input  through iteraction
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Step 3(s) Suppose that there remains at lenst one incorect pai in A. If
o snce the ncorrec paie wil ot be removed from A fn the subsequent
Stepe (1) theough 5(1) the incorrectnes of A il be preerved n the sub-
seqent Steps (5) through (). So, suppose that thee remais no ncorect
par in A aftr popping (B,1) and (C ). Since i ncorrect, it must be the
casntht a et one of (5,4) and (C,u) isinorrect. et £ be the polyno-
mial that P providesfor the permanent of Eu) = yB -+ (1 ~3)C. Suppose
that  survivesthe tet in S 3(4). Then /(1) = aod 1(0) = v. Snce £
saises perm(B) = perm(E(1) ond perm(C) = perm(E(D) and, by ou as-
sumption, ithe v # perm(B) or 7 perm(C), we have £(4) # perm(E(3).
Sincedin(B) = dim(C) < Aim() < (o), perh(E(y) s & polynomial of de-
sree at most (). S0, by the Polynomia! Inerpolation Lamima (Lermma 6.2),
e are at most p(n) many  for which perm(E(r) /(7). Thus,the prob-
abity hat the par (D, ) that V. produces rom (B,5) and (€, s correct
s 3t most 25} Thia imples.that. the probabilty tht the incorrctness of
i preserved during  sngle run of the loop body i at enst 1 — 2. The
number of imes tha the loop body of Step 3 i executed is

Palotn) -1)
Y G-n<BEER

ssicdimans

20 the probabilty that the unique pair in A in Sep 4 s incoreet s at least

(o)™ 2

S, i it robily a s 1 55 T et cha § provided
P 14,505 §. Thi b  comradicion. Thu, e prtocl s sond.

6.1.5.3 Runing.Time Analysis. To prove that V' is polymonil time-
ounded,we may sssume tht St 36, the provr rturns the polynomial
110V by providing ntegers o, ., uch that () = r 1 -+
o, where d = dim(E(r)). Let A be a query of M and d = dim(4). Assuming
that V reaches Step 4, V/ executes Step 3(e) m = Y, (i — 1) = 41

ime. Fo eaeh 0 % € < ot £, be th it g € such hat
‘the interval [~2‘,2] contains all the integers that have been seen either as
couficiets of polysomia entries in £(s)or nties of maics in he st A
by thand of the h axection of tap 3e. Then fo < pr), For very 5,
1< 1 < m, ench entey of E(y) i the th execution o St 3(c) takes the
form 71—, 2 a4 o i e
oy s slced fom 0,27 1) i mple tht fo evry 1,1

% . o (k) < (b it € ) <20
Than, by pct 4 f Propotion 83, o avry teger matx B hat appess
‘during the protocol, log [perm(B)| is at most.
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P. Suppose that V on input = along path 7 terminates bafre V comple
ts simulation af M on 2. Since V never accepts during the execution of the
protocol, thi implies that V. rejects 7 along path 7, and this, 7 doss not
contribute to the probabiliy o acceptance of V on inpt . So, suppose that
Von input = along path = complete it simulation of M on input 2. By
asaumption, P provides the correct answer n Step 1 to each quey that V on
input 2 makies. o, the answers that V obtains from P long path x are those
M o input 2 would recive with porm o the oracle. This implies that the
computation of M on input = thet issimulated by V on input  along path
e precaely that M on input 7 with oracle perm. Since M i determinietc and
2 € L, this mplis that ' on input 2 slon path = rjects. Hence, regardiess
f whether 1 fnishes its simltion of M o input 7, V. on input 7 slong
path 7 rejcts. This implies p =0, & contradiction.

By the above discussion, suppose that V. has made a query A having
dimension greater than 1 10 P and P has provided & vlue u # perm(4) to
the qery A in Step 1 of the protocol. Then V. sets the vale of A o [(A, )]
We will examine the subsequent execution of Seps 2 and 3. To simpliy our
discusion, call & matrixintger pai (B,u) in A cormet if v = perm(B);
otherwise, call the pair incormet. Cll A cornet if every matrx.nteger pair
it s correct; otherwise, call A ineormct, Note that the following three
conditions hold:

« Inmediasely after Step 1, A
s incorrct by our supposition.

 In'' halts before reaching Step 4, then ¥ does so by rfecting 2.

1o Step 4, V' returna o its simulation o the machine M on input if A is
correct and efects 7 otherwise.

incorrec bocause i unique clement (4, 1)

Wo will how tht. the probalily hat V reschs Sep 4 and A bocomes
ot bor V peches Sy 4 et 1.

Fire wpore hak A i ortcs st th Segnning of Sep 2. Lt (B,1)
e he v marimeger e v A and 4 b he dimein of B. e
o et 8 1. Oterwie, ¥ wil immdisely Jmp i Sip 4 and
h ncrrctnes af A il b presrsed. Supose etV b btsined rom
e bttt S 26) 1«1 8 ah permantof the miors
By B, reapective: n th subeuens St 3. V e whther
b Supposs tht i ek sncesds. Then sice pe(B)
S rcigryperm(B1,) and v # perm(B), it mia be the case that for at et
onet:1 <1< d, perm(By) # vi. Thus, A at the beginning of subsequent
Stop 3ic coret I Stk word i 1 dow ne et 1w 2 then
Ch proerty tha A i ncorrec shold b proved duin tep 2. and A
e corect ¢ the beganing of St 0

S, sppote tha the 1 i et t e boginin.of St 3. A
s oy one st  immediaiely reare t St 3 wihout modiying
X s he mcrrecines f N presrve S uppos ha A ha ot st
o dements. Lo (5,0) and (G) b the pare hat ¥ popa om A
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What kinds of langusges can be verifed by interative proof systems?
‘What are the relationships between this e system of proots and the tra-
ditonal ystem of succinct. proof verlcation? Would there be any diference
i more proves were added to the system? Prcise answers o these ques.
lons have been given, Chrough remarkable developments n the technique of
constructing protocols between the verie and the provers. The technique
consists of two parts: (1) converting membership questions into arthmetic
formulas and then (2) verifyng evaluston of such formulas with gradual,
Fandom instantiation of the varisbies in the formula (polynomial inerpola-
ton).

In this chapter we swim through the progres in this area by outliing
the dovlopment of the technique.In Sect. 6.1 we prove that P#* has iter-
active proof systems. In Sect. 6.3, improving upon the technique for P#F, we
prove that the clas of langiages with interactive proof systems is precisly
PSPACE. In Scct. 6.4 we prove that the clas of anguages with multple-
prover iteracive proof systems is precisly NEXP. Section 6.2 pesents an
spplicaion of the polynomil nterpolation techniqe tothe problem of enu.
merating candidates fr the permanent functon.

6.1 GEM: Interactive Protocols for the Permanent

6.01 Interac

Proo Systoms

Lt us formally define nteracive proofsystems (se Fig. 6.1). An iteractive
proof system has to components, verlfer and a et of provers. A verifier s
 polynomial tme-bounded probabilsti orscle Turing machine with k query
apes and k query states for soma k > 1. Por each , 1< i € , ch ith query
tape and the ith query stae ate asociated with  unique machine, clled
 prover. For each k > 1, when the veriier nters the Ath query state, the
contents ofthe Ath query tspe are reod by the kth prover and is answr to
the query replace the query; al thes acions take place n one step. The
provers can use unlimited computational resources and randomness, and can
romenmber previous interaction with the verifer. However, when there s more
than one prover, they canot communicate with each other.

Definition 6.1 For any k > 1, a lenguage L has o k-prover interactive
roof system if there exists a polynomial time verifie V interacting with k
rovers such tha, for every z € 5, th folouing conditions hol:

1. (Comploteness) If = € L, then there is a set of k mochines
Py . Py, such that that V. accepts = uith probabity grater than §
with Py - Py as provers.

2 (Soundnoss) I/ 2 & L, then through interactions with any set of
provers, V on input = rejects with prbabity greater han
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A standacd view of mathemmaticl statements is tha they shovld be accom-
‘panied by succinely writen, easly veriiablecetifcate. To wi, open one of
Your favorite mathematic or theoretial computer seence texthooks (if You
rave one f o, perhaps the present text will become Your favorite). You'l
s tha sl the formal statements thee ace accompanied by strings of text
called proofs, which the utho belives to be asly verifiable by anyone with
enough background.

Pushing a little harder on that easly veriable® property of crtficates,
one arrives st the concept of algorithmic verification of mathematicl state.
‘e, It s this concept that led Alan Turing to invet his “computation”
model the Turing machine.

“Ths when w talk about standasd Turing machine computation, mathe-
matica tatements are thought of s deerministially verifible For xample,
we often view NP as the las of languages with the property that every mem:
ber has short, deerministically verifabl cetificates but no nonmember has
such certifictes.

“The intersctve proof system, the focus of this chapte, reflcts & new
spprosch to verifcation. Two features are added to proof system: the use
of randomness and ineractions with & machine (or & st of machines) that
provides nformation. We no longer require that mathematical statements
posscss determinitically verifiabe proofs. The mathematical corectncss of
satements is verifod throngh ineractions between two machines, called the
verfer and tho prover. While the computational pover of the verifer s lim-

o polynomial time endovwed with the abiity to we randomness, the
o ofthe prover s unlimited. The objectiv of the verifir i o determine
with a high level of conidence whether the input i & vld staement, while
the objetive of the prover i to make the verifer beleve that the statement
s valid with as high confdence as possible, regardlss of what probabilistic
choics the verfer makes. A anguage has a interactive proofsyste i there
i a protoco that has the following two propertie: (1) for every member, &
prover is able to make the verife believe with very high probability (cose to
one) that it s valid member, and (2)for every nonmember, the possbiity
that the verifie believes that the nonmember s 8 valid member is close to
2010 o matter what the prover docs,
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Prover 1
e Query Tapes [t To
Contol
e ProverZ

Work Tapes
Fig

At prove nteractve proof sytem

1P (repectiely, MIP) is the clas of ol languages L that have one-prover
ineratio pofssems ety &rover deato prof sstems for
some k)

Well drop
is only on prover

e-prover” whenever t i cleat from the context that there

6.1.2 Low-Degreo Polynomials and Arithmtization

One of the two bsic ingredionts o the palynomial interpolation echnigue is
arithmetizaton-—transforming computational problems o those of valuating
(saebraic) frmulas nvolving polynomials. Two propertis of polynomials
arecrucia:

« Low-degre, norcero polynomils have a smll number of sers.
= (Univariate Plynomials) 1t f i a polynomial of degree d over a feld F,
then the number ofroots of f i st most . (See the proofof Lemma 6.2)
~ (Muldvariate Polynomials) 1 £ is an s-variate polynomial of ot
degree st most d over » ld F, then the numbet of clemente of F* that
ate oot of £ s at most dF|[4-1. (See Lemma 6.32).
« Low-degree polymomials have o robust charaterization, in the following
= (Univariate Polynomials) 1/ i a polynomialof degeee d over » ield
F, then f can be specfied uniquely ither by the d + 1 cooficents of
or by alst of d+ 1 points that / passes through. (See Lernma 6.28)
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Note, crucially, that this function peaks when (z) = 201, ot which
point A(z) takes on the value 24120051 2 9702, For al val.

s of (), 0 < f(x) < 20, other than f(z) — 2NN, Kz) <
ez 2 20503 Thus, + and S have exacly the property we
wore seeking. O Lemma 514

We continue with the proof of part 2 of Theorem 5.13. We will prove
separasey the claim for maimum and for minimum.

“Asoume that #P ia closed tnder masimum. Lot L be an arbitrary C-P
languge. Let  and S be s in Lemma 5.14. So clatly there is 8 #P function
1 such tha, fo each =,

Lzel = f(x) =200 ad
2 2¢L = f(z) <2002

“The functon o(z) = 27072 _1 clealy belongs to #P. By our assumption of
closure under maximum, A(z) = max{/(z)9(x)} i & #P function. However,
2 € L then h(z) = 2404, and itz ¢ L then h(z) = 2402 1 Thus,
Lc SPP. As L was an arbitrary C..P language, C.P C SPP, and thus
C.P = SPP a5 PP C C.P holds unconditonally.

We turn o the case i which we assume that P s closed under miimun,
Let L be an arbitrary C.P language. Let r and S be asin Lemma 5.11. Let.
(polynomisk-time) predicate (z,5) be defined such that it holds exactly
when S(z,) holds. So, via the NPTM that gueses srings y of lengeh
(1= and then checks (z,), clealy there is & #P function 1 such that,
foreach 7,

Lael = f(z) = 320D, md
22gl = [ > @]

The functon (x) = 1+ (3/4)2°0%) clarly belongs 1o #P. By our as-
sumption of lesure under misimum, h(z) = min{ (2, 0(2)) i o #P fonc.
Gon. However, if 7 € L then h(z) = (3/0270%), sud it 2 ¢ L then
)= T /4D T € s Howes SPP = 5P, s
L ESPP. So, agin, we may conclude that C_F = SPP.

5.4 A Complexity Theory for Feasible Closure
Properties of OptP

#P, which captutes the cardinality of the sccepting pach sets of NPTMs,is
ot the only computationally central clas of functions. Another importaat
class of functions is OpP, which captures the notion of maimizing over the
outputs of an NPTM. This can be formalited 35 follows. Consder special
NPTMs for which each path outputs some nonnegatie ineger—paths that
do not explicily do so are by convention viewed as implicitly having output
the intoger 0. A functln / 1 an OptP funcelon f there s o such machine,
N, for which, on each 7,
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and otputs  oberwise.

“This machine will ot 0 on each o s paths that docs nt g paths
having 1(2) s ey nd hovin () 0 5, o hat docs s such patls bt
ks b e for ot . wil oty ouput op(/(2)(23) om ech
ach that o gues pths achiving s thie outpits (2) and 9(5) and
e gueses sccpuing paths of N, and Ny, Not that some pth ndeed wil
ks th comec guessa

W now argue hat par 1 imples part 3. Assume tha OpeP is closed
under prope subtraction. Let L be a aebitrry NP language. Consier an
NPTM that simulate  standard NPT for L bt that o each ejecing path
outputs 0 and on each sceping path outputs 1. This machine provs hat.
he chaacirisic funcion of L  an OpP funcion. The fncion o)
is s an O funcion

Since OptP i by sssumption closed under prope subtrscion, A(z) =
5(2)6 (2 i an OpeP function. et N be an NPT that computes i the
Seme of 0 OpLP mackine, L. n eachinput =, the Lrget vaue ot by
N(2) i vy hz).Note that hs) = 01 = € L and he) = 12 ¢ L. So
Consde the NPTM, V', that on cah ioput. = gocses o pah of N(z) and
Sccpts (om the curten. pat) i the gessed pth outpu 1. L(VY) = T, o
oue aeitrary NP langung i ot blongs 1o oNP. Thus NP = coP. O

Weloav . cxereis o the reade o prove for the fnction class SpanP
(s Sec A16)th anlog of Theorems 5.6 and 5.15

Thoorem 5.16. The folouing statements ar equisaent

1. SpanP s closed under proper subtraction.
. SpanP i closed under every polmomial-time computabe operation.
3. PP < PH = NP.

5.5 OPEN ISSUE: Characterizing Closure Under
Proper Decrement

The open issue we wonld mast like to bring (o th reader’s attention i o very
natural one, et it hs lon resisted solution.In Sect. .3, we saw a necessary
condition—NP € SPP—for #P to be closed unde proper docrement, and
we also saw  sufficent condition—UP = NP—for #P to be closed under
proper dectement. Can one ind & complete characterzation”

Open Question 5.17 Proper decrement i the (unary) opertion o(n)

MO, ie, o(n) = max{n~ 1,0} Find standard complerity classes C and D
uch that

#P is closed under proper decrement i and only ifC
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J(2) = max{i € N some path of N() has § s It output).

Just s we say that proper subtraction i, smong all polymomial-tie com-
putable operstions, in some sense the “east likely* closure property of P,
can we also find a polynomiabtime operaion that s a least ikely” closure
property of, fo example, OptP? And if 0 i thre aao some compleity lase
collapse that characterizes whether OptP has al plynomialtime computable
closure propertes?

The anewe is somewhat surpising. For OptP proper subtracton again
i leant ikely" closure property. The same aso holds fo the welstudied
function class SpanP. For both OptP and Span, there s & complexity class
collaps that completely characterizes whether the cass is closed under all
polynomial-time computable operations. However, in all thtee cases—#P,
OptP, and SpanP—the characteizatons differ, otwithstanding the fact that
propes subtraction i sach case i & eset likly closure property.

Theorem 5.15  The folowing statements ar equislent

1. OptP is closed under proper subtraction.
2 OptP s closed under every poiomiak-time computabe operuton.
3 NP = coNP.

Proof Part 2 immediately imples st 1.

Wo now argue that prt 3 impliespart 2. Asume NP = coNP. Let  and g
be arbitrary OptP functions. Let Ny and N, bo NPTMsthat prove that these
are OptP functions. That s, on each Input . the maximum value output
among all paths of Ny(z) will bo /(z), and on each input 7, the maximum
Value output among all paths of Ny(z) will be (z). Let op N x N —+ N be
any polynomialtime computable operation. Defne

Ly= (=0 5@ > 9

and
L= (=) o(z) > )

Clearly, Ly € NP and L, € NP. Since NP = coNP, L7 € NP and T; € NP,
say v, respectively, NPTMs Ny and Ny

We'now describe an NPTM that, viewed as & machine defining an OptP
function, computes 0p(/(2),(z))- On input 7 our machine wil gues & com-
putation path of Ny (z) and will guess & computation path of Ny(z), and it
will fnd the output of each of thess computation paths. Let u cll those
outputs 10y and wy, respectivly. Our mackine then guesses & path g, of
Na((z, o)) and gueeses & path pa of N((, 0. The current path of aur
‘machine then outputs (1w, 1) i

(pr is s acoepting path of N ((z,w7))) A
(72 is an accepting path of N, ),
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5.6 Bibliographic Notes

The closureof #P wnder addition and multplcation, Example 5.3 and 5.4,
was known o researchers, and appeared in notes, s far back a8 the carly
1980+ (Reg5 Reg01]. A varity of other closure properties of #P were ob-
tained (so the discussion in (HO93]) by Cai et al. [CGH89] and Beigel and
Gill [BG92)

Section 52 ix due to Ogiwara and Hemachandra [OHOS), except that
the trm “witnees reduction” and the discussion of the general ‘philoso-
phy" of witaess reuction at the stat of the secion reflct the viewpoint
of Gupta (GupS5]. The text before Theorem 59 mentions in pusing that,
i additon to proper subtraction and integer ivision, other operations are
Known to be closure propertiesof #P fand only if UP PP Such operations
include rious operations having to do with the span and plaraly tests on
sos of functions, and can be found in Ogiwara and Homachandra [OHO3),

Scction 53 i due o Ogiwra and Hemachandra [OHOJ], except. that
part 1 of Theorem 5.11 s due to Torén (see [OHS). Also, part 2 of
Theorem 5.11 here extonds the following result of Ogiwara and Hemachan-
ra [OHO3]: If oNP . UP, then #P s closed under proper decrement. To
ane the relationship between tha resul and past 2 of Theorem 5.1, note
hat NP C UP == UP = coUP = NP = coNP. Thus coNP € UP —
UP = NP. However, the convers i not know to hold.

Part 1 of Theorem 5,11 shows that if #P is closed under proper docremen,
then NP C SPP. We note here . diflerent conclusion that also ollows from
the samo hypotheris, and in doing 20 we will ntroduce & new, fleible luss
for dealing with moduk-based computation. For cach k > 2, define the clas
FTMP (“inely tuned mod k") to be the collction of all L satisfying: For
every polynomial-time computable fonction £ 3* + 0,1,k ~ 1), there
e an NPTM N such that, for each z,

1if2 ¢ L then N(z) has 1o accepting paths, and
28 2 € L then the number of accepting paths is congruent, mod &, to
1)

s not hard to see chat, for ench k > 2, FIMGP C ModZuP, where the
ModZuP are the “ModZ" classcs defined by Beigel [Beioib]. Wo can now
state the additional claim that holdsregarding propes docrement.

Theorem 5.18 If #P is closed nder proper decrement then, for cach k >
2, it holds that NP € FTM,P.

The proof i simple. Given an NP language L, consder the machine that
computes it That defines o #P functon 9. Since by ssumption #P i closed
under proper decrement, cach of the following k functions is a P function:
Eo(x)50, kg(2) O1, .. Ko=) © (& —1). Now ot tha, or each polynomial-
time function £ < 5%+ (0,1, k — 1}, there thus will be & 4P function
that on each input  evaluates /(2),sees what it s congruent t0 modulo k,






index-11_1.png
Contents

Preface vii
Tnvitaton ... B vi
Usage

1. The Self-Reducibility Technique 1
L1 GEM: There Are No Sparse NP-Compiste Sats Unless P=NP.

12 The Turing Case. 1
13 The Case of Merdy Puting Sparse Sea in NP - P: The
Hartmanis Tmmerman-Sewelson Encoding ... =
1.4 OPEN ISSUE: Doss the Disjunctive Cose Hold? S
15 Bibliographic Notes ... Ll
2. The One-Way Function Technique 5

21 GEM: Characterizing the Existence of One Wy Functions .. 32
22 Unambiguous One-Way Functions Exist If and Only If
Bounded:Ambiguity One-Way Functions Exist »
23 Strons, Total, Commtative, Associative One-Way
Functions Bxis If and Only If One-Way Functions Exist .. 36
24 QPN ISSUE: Low Anbipiy, Commuatve, Aswciive

One Way Functons? ©
25 Biblioraphic Notes “
3. The Tournament Divide and Conquer Technique s
31 GEM: The Sem-fesible Sets Have Smal Circits. 5
32 Optimal Advice for the Semi.feasibl Sts =
33 Unique Solutions Collaps the Polynomial Hiorarhy ... 56
34 OPEN ISSUE: Are the Semi-feasible Ses n P/lnear? .. 63
35 Bibliographic Notes o
4. The Isolation Technique o
41 GEM: Lolatng a Unique Soltion Tes
a2 n

]






index-122_1.png
108 5. The Witness Reducton Technique

euch that i can be “appreximated with high probaily” by a ncton that
e ceran probabilaic vrsionaf 477 n i st Gupta Includes
inating sy ning whetber unctions i b st propeeties 1 the
fac ha they educethe number of witeses (this shokd be contrsted with
the e work of Hemaspaanden, Oglhac, and Weehsung on the reducion
ofnumbers o ctions (HOW00] an o Durand, Hermann, and Kol on
h reduction of numbersofwitnsss [DHKO0). I this bk, the nlation
Tuchnique chapt i s bout witessrduction, and Gpta inks th work
underlying that hapter with the thory of losure roperte. In additon,
Gupta iteoduce, ndependently of Fenner, Fortow, ad Kurts [FFKO],
e cass GapP. Fenne, Fortnow,and Kot studiod some closurs properties
tha GapP possscs, and Gupta ((Gupt5,Gupd2], se also [Bei7] regcing
oneargument propertie of GapP tht il n some reatviaed word) bt
analogouly to Seck. 5.3,  rch complxiy thery for thos properties that
GapP seem ot 1o posces. Beyond that, h s bl » sl and cohe-
sive complenty theory Lr the chs f oncions tht re qotints of GapP
nctons (Gupds Gz,

"o another altruniv spprosch to clore propertie involves asing
whethe . clas i “almost” closed under an apeeaion, in th sense that
fome amount of extra pre- of pest-proceing brings the operation within
e reach ofthe clse. This spprasch hae been ivestigaced by Opihars et
o [OTTWoB, and there i, th consequncesof the cltion Techniqse
{Ghap. ) play'an mportant e

Riducion ot of the cardnaly of accepting pachs bt raher of the
cardinalty ofthe scceptane type of NPMY functons s been stcied by
Hemaspaandra, Ogihar, and Wechsung [HOWOD, Thee reuls contrst
sharply wih the et of this chaptr, s they sho that in that secing
adinality rduction i posible i many cass n act, Hemspaandes, Ogc
e, s Wochoung [FHOWOD give » sliciens condition forsuchcarinaiey
reducion. They s shew that for many cass ot meetng the sficen con.
iton cadinaty reduction i o possie les the plynomial hraschy
collpies to 5, and Koeu [Kos0] has show tha for ench fie-crdinaity
ype s not ecting the suffcient conditon thee i at et ono reltvized
wrld in which cardimalty reducion fo that cae i not possbl

Finally, throvghout this chaptr, we have discused and haracteized
Wheher lases (4P, OpLP,and SpanP) st closed wndr al polynomi time
computable peratons. However, o ech of thes thre function e . it
i rensonable o ok whetherC i osed underall . computable opeations. n
fact, Ogivacs and Hemachandra [OHO3) hav shown tht, fr oach of thiso
e closse, it holds that C i closed undor sl polomialtime computable
opertions i and only i C i close snde l C-omputale aperations
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and.then simulates the machine whose number of accepting paths define
the approprine one of the k functions mentioned above. So  indeed is in
FIMLP.

Section 5.4 is due to Ogiwara and Homachandra [OHOY]. For SpanP
and OptP, Ogiwara and Hemachandra in fact prove that a variety of ther
operations —including proper division, spans, and, in the case of SpanP,
pluralites—are also et likely” polynomial-time computable closue prop-
erties

Rogasding Sect. 5.5, we mention that for the case of intger division by
o (rather than proper subtraction by one), and even some more genersl
division patterns, Gupta [Gupo2] has obtained  complee characterization,
i terms of complxity class collapses, egarding whether GapP has such &
closure property. However, for #P the st remains open.

“Though this chapte i concerned, exceptin pars of Sect. 5.3, with oper-
ations that operate on two arguments, one can lso tudy operations on one
argument. For this case, Cai et al. ([CGHY 8], se the discussion n [HOSS])
showed tha #P is closd under any nite sum ofmliples of binomial cocfi
cients whose upper lement i the nput and whose lows clement is s constant,
nd Herteampt, Vollmer, and Wagner (HVWOS], see also [Beigt) showed
that every one-rgument operation other than those fail, i at least one rl-
ativized world, to be  closre property of rlatvized #P. They also achieve
 similar chazactrizaion for mult-argument operations. This approach—
scking which operations fal in at least one relativiaed world to be closure
properties—difers from both the approaches (namely,characteizng closures
in terms of complexity clasa collapse, and lnking the relatve Likclibood of
closue properties) pursued in Sect. 52 In some sense, it ive » somewhat
less reine resolution than the approach of Sect. 5.2 For example, consder
an operator under which #P s closed if and only if UP = PP (equivalenty,
UP = coUP = PP) and consider anotheraperator undes which #/Pisclosed if
and only if UP = colIP. Having such characterzations gives perhaps greater
sight into the relative kelihood that #P has theseclosure propertics than
doss merely knowing that for each of the two operations there is some el
tivised workd in which #P is ot closed under the operation. On the other
hand, btaining “ifand only f” characterizationsinkin the collapses of com-
Plexiy casses to whether #P has  given operation is relatvely difical, and
o such complete characterizations have ot becn abtained for many natursl
operaions, e, those discussed in Sect. 5.3 though, even in those cases,
the partial resuls that see known aze suffcent o yield,vin standard oracle
el the fat that there azerelatvized wrlds n which the operations are
ot closure propertis of #P.

Gupta ([Gups, see also (Gupo2]) has suggested o very ineresting al-
termate approach t closure propertics Given that it secms unlikely that
'UP = P, and thus unlikely that #P is clos under proper subtraction, he
frames  diffrent question: I the proper subtracton of two #P functions
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operaions to 1-ary operations—et usexplicitly define thes aperations. The
st owo parts are Just an application of Defnition 5.2 o the particular two
argoment operators.

Defnition 5.10

1. We say that #P s closed under minimam §, for each f, € #P, the
function h(z) = mind (). o(x)) s in #P.

2. We say that #P is closed under maximum ¥ Jor cach £,9 € #P, the
function h(z) = max(f(z), () is in #P.

3. We say that #P is closed under proper dectement i, for cach { € #P,

4. We'say that #P isclosd under integer divison by two i for ach | €
#P, the function h(z) = |{(2)/2] is in #P.

Regarding closute under proper decrement, the fllowing partal reults
are the best known. The two part of the theorem do not match perfecly,
et they are ot too far aparts SPP is the “gap analog” of UP.

Theorem 5.11

1. 4P is closed nder proper decrement, then coNP C SPP (equivalentl,
NP C SPP).
2 IfUP = NP, then #P is closed under proper decrement.

Proof We will st prove part 1, Assume that #P s closed under proper
decement. Let I be an asitrary NP langusge. Let N be an NPTM for L,
nd It/ b the #P fonction defined by the cardimality of N's cceptiog
pathe. Since #P is closed e proper decemen, 9(2) = /(2) 0 1 i
P function. So ther is an NPTM, N, and & polynorsial, 5, such that
on each input 7 it hods that N'(z) has exaciy 27D paths, and exactly
() of those are ccepting pah. It fllaws, by reversing the sccepting an
reecting path behavio of each path of N, that the function 2101 —(z) i
s #P funcion. Since #P i losed under addition, i ollowa that the function
3(e) (270D () i 4P foncton. Howeve, o thisfunction equal 220D
i (2) = 0 and equala 2% 41 otherwis, the NPTM whose ccepting path
cardinalites dein this P funcion i tself machine showing hat I, € SPP.
Thus NP C SPP. Since SPP = caSPP, NP C SPP and coNP C SPP are
cquivalent statements.

"Wo turn to part 2 of the theorem. Assume that UP = NP. Let f be
an arbitrary #P functon. Let N be an NPTM such that /(z) expresss
the number of accepting paths of N on input 7. Let B be the set of all
trings (z,9) such that s an acepting path of N(z) and there xits an
acceping path of N(z) that i lexicographicaly lasger than . B € NP, s0
since UP = NP by sumption, B in in UP. Lt N' be n NPTM acceping
B such tha on cach input. 7 ¢ olds that N'(z) has st mos one accepting
compatation path. W descibe an NPTM, N, such that on each nput 2
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2. on each input 7, 2 € L if and only if N(z) has t least 2"~ accepting
paths, and
3. on each input 7, N(z) has t last one rejcting pach.

The number of acceptin paths of N defines  #P function, call it f(z).
‘Consider the function g(x) = 2", which cleaely is o #P function. So,
by our hypothess, the function h defined by h(z) = /() @ o(z) must also
be 2 #P function. Note that i 2 L then h(x) = 1, and i 2 ¢ L then
h(z) = 0. Thus, the nondetermiristic machine corresponding to i tslf »
UP machine for L. So L is in UP. a

Finally, note that we have in fact proven more in this secton than was
explicily claimed. In particular, note that in the proof of Theorem 59, the
function that we divided by, g(z) = 2"1, though certainly a #P function,
i alao . polynomial time computable function. Thus, the proo actually es.
tablshes that #P isclosed under integer division (.., f { and g ave in #P
and g is sticly postive then /(x) © 9(z) s in #P) if and only if #P is
closed under integer divison by naturalvalued polynomiah-time computable
functions (1., i/ is a #P function and g is a polynomial-time computabie
function whose output is always a natural number greater than zeo, then
J(2) @ 0(2) is in #P), and both these conditions axe themselves equivalent
0 UP = PP. Similarl, it aso holds that #P isclosed under proper subtrac-
tion i and only if #P s closed under proper subtraction by naturalvalued
polynomia-time computable functions, and both these conditions are them-
slves squivalent o UP = PP.

5.3 Intermediate Potential Closure Properties

In the previous section, we saw that some operatons, such as addiion, are
closure propertie of #5. We lsosaw that if #P i closed et cither proper
subtraction o iteger diision, then #P is closed under al polymomiak-ime
computable operations and UP = PP.

In this section, we study a diffrent collcton of operations—operations.
that #P is not known to posses, but that also aze not known to have the
property that #P is closed under them i and only if #P i closed under all
polynomialtime operations. Thus, for these operations, it remains posible
that #P is closed under them, yet s ot closed under proper subtraction
Again returning to the snalogy with NP-completenes theory, these opera-
tons e in some sense analogous to potentially “ntermediate” sets—sets,
uch s the st o all primes, tht aeein NP yat are neither known o be NP-
complee nor known to be in P. Ameng the closure propertiesthat, s far
as i currently known, fl ino this strange itetmediate territory, ae taking
minimum, taking masimur, propet docrement, an integor civasion by two.
To be rigorous—both about what we mean by these operaions and because
the later two of these operations stetch our notion of operation rom 2-ary
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‘Theorem 5.13

5. If #P is closed under minimum then NP = UP.
I #P i closed under mazimum or under minimum then, P = SPP.

Proof We frst prove part 1. Let L be any NP language, fx an NPTM
aceepting L, and It/ be the #P functon defined by the machine’s num-
ber of accepting paths. Assume that #P is cosed under minimmum. Then
min{/(z), 1) i a #P function, but the NPTM wich this number of accepting
paths on each nput = in fact s 3 machine proving that L € UP.

We now prove part 2. Following the alternate defiaition in Sect. A.12, a
Ianguage L is n C.BPIf there exiats & polynomial 4 and & polyomial-ime
predicate R such that,for exch 2,

zel < |1y lvl = all=) A Rz} = 200"

Note that for strings 7 that do not belong to L, all his says is that
number of strigs y of length g((1) for which Rz, holds is not 2917
Howwver, those numbers could be cithe greate than or lessthan 29001
indeed, perhape greater than 29021 on tome inputs and less than 2907)-1
on other npute. This makes it hard 1o xploit maximization o misimization
0 get eful conclusons. What we frst necd i e characterization of C..P
i which al ejection earcinalitiesfll “on the same side” of the acceptance
cardinality. We state this in the following lerma. This lemma is omewhat
rlated to some proposiions in Chap. 9. In particular, Propasition 8.7 and
(vie & “multiplying  GapP fonction by negative one” tweak) Proposiion 9.5
caa alternatively bo seen as ollowing from the lemma.

Lomma 5.14 A language L isin C.P if and only i there exists a poyno-
mial and o polymomial time predicate § such tht, for cach £,

1€ L then 1y o] = (=) A Sz, )] = 27002, and

2z €L thenlify| I = rizl) A SCa )} < 27002

Proof of Lemma 5,14 Recal that  angusg L i in C.P cxcly it
g s ptynonia 4  plynoris e el R it o
cadn € L oo s = e A R = 20 Lk L e an
ey G0 angune, g 4nd R iy b dehton s e, Lk
70 = 250, Lok (0,5 b the prdia hat acephs el

(@, wn ] = hoal = =) 0 = ) A R(z, 1) A Rz, wa),

where " donotes coneatenation of strings. Let f(z) dencte [y ) =
ll)» Rte ) hemumber f v e () o whichS(.5)
accepta s cxactly

h) = Ja)(@ D — ()
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the number of accepting paths of N'(x) is f(z) & 1. On any nput z, N"
nondeterminitically guesis a computation path  of N(z) s then on its
curtent path simulates N'((z,)). So, all N(z)'s accepting paths except the
exicographically largest one will contribute ane of the accepting paths of
N7(z), and the lexicographically lagest acepting path of N(z) wil generate
2et0 adceping paths, Thus, we indoed have properdecremented /. O

Regarding closur of # underincegor divison by Ewo, it s known o have
soemingly unlikely consequences, but no “f and only " chacactrizaton is
o,

Theorem 5.12 If #P is closed snder integer division by two, then &P =
SPP (and thus PH C PP).

ProofThis proof s smilar in spiit o part 1 of Theorem 5.11. Assume
that #P is cloted under integor divison by two. Lat L be an aebitrary 6P
langusge. Let N be an NPTM and p be a polynomial such that () on sach
input 7 it holds that N(z) has exactly 2471 computation paths, and (i) on
each input 7 it holds that N(z) has an odd mumber of accapting paths.
and only f 2 € L. Let f be the #P fonction defined by the cardinalty of
N'sacceping paths. Snce #P i by asoumption closed under integer division
by two, and is unconditionaly closed under multipication multplication by
fixed constants,

o= =2/ 02

s 0 #P function.
“Alto, the number of rjecting paths of N(2), namely, £(2) = 2% (),
s clearly o #P funcion. Sinco P i closed under addition, we have that

@D — @) + 2f() 07)

#P functon. Howeve, (2) +9(z) equals 24 i (z) s even and equals
0 1if 1(2) is odd. So the NPTM whose accepting path cardinaiies
define this P functon is it a machine showing that L € coSPP. Thus
©P C coSPP. Since SPP — coSPP, we conclude that @ C SPP. Thus, snce
SPP C 6P holds unconditionaly, &P = SPP.

So it #P is closed under integer divison by wo, then GP = SPP. Note
that Corolary .11 certainly implies that PH € PP So if 4P is closed
under integer divison by two, then PH C PPV However, PPPF = PP
(see Fig. A.20), 30 PH C PP. a

Regarding clovure of #P by minimum or maximum, 1o “f snd only if"
Characterization is known, though some necesary conditions are known. Of
course, ince both minimum and maimum are polymomiaktime computable

operations, it goes without saying, via Theorem 5.6, that UP = PP is
Suffcint condition

160 +ol)
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Th rowin ke 2 npot v negers 1 > 2 and €5 1 and otpots

n 0, M~ 1) wnder wniorm dtribution wih & sampling et sour

i brobabiliy Lo than o e 12

Lt e e sl ntegr such that 2 2 M. Repent the fellowing ot st 1

(9 Use £ i coin s to sl g Y b 0 and 2 1.10Y < M,
e i the oo ad re Y-

1 o of th s are succeol, then acccpt =

Deine the polynomial m by m() = r(n)2p(n) + 2(s(n) + 1) +3. The
protocol use the following sampling algorithm that, on input M and £, out-
s an nteger between 0 and M — 1 uniformly st random, where » sompling
eror accura with probability less than o equal to 21 (tho equality holds If
S only if M i  power of ).

1 ot hard to see that the sampling algorthi works as desiced. The.
umber £ satifos 21 < M < 2. So,n a singl execution of the loop bods.
the probabiliy that the mumber Y is greste than or equal to M is 0 if A
s o power o two and los than § otherwise. Since at most £ rounds will be
exectted to find an approprise ¥, the crror probubilty i precisely 0 if M
. power of o and eesthan 2" otherwise. For each exscution of the loop
boiy, s for ench £, 0 < § < M —1,the chances that theselection Y is qual
Lo preciely 2-C_ So, the resuing disribution is niform.

We'can susume that the prover has » binary encoding of an nteger @ €
[2msD,23n20] whih i supposedly o pime number and a cetficat of it
primality that can be veified in polynomil time. This assumption is valid
By the Prime Number Theorem (Theorem 6.5), such  prime exists and the
fllowing theorem, which we sate withott 4 proof, shows that very prime
s polynomial-tme verifiablo certificte having polynomial legth.

Theorem 6.16 The set of all prime numbers uritten in binary belongs
toNP.

Now we are ready to present the protocol in Fig 6.5

We claim that this protocal witneses that L € IP. By definiton m, 7,
a0 s are all polynomial. S, the entire computation requires plynomially
many stepe. The prababilty that the smpling lgorthm fals is e than
2770 sinco the parameter  a set to m(jz). The tota number of samples
enerated i () (s1)+1).Since ) = r(jz) 2p(zl)+2)(s((z) +1) +3,
the probabiliy that a smpling eror oceues during the exacution of theentire
protocol, egardless of whether 2 € L or ok, i less than 3

Claim 8.7 The protoca i complete.
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and for each & € {1, . r(eD), £ € (0,0 sz}, a8 € 207D, and
7= (e ) €2 define

Ghiesd= ¥ %
ko s
Rucaon (ny oo v meeten, = eagap))
Rualln - vmiess “eaien): B)-

Then, by Propostion 613, we have the follwing result.

Proposition 6.14

L Btk e (b ooz, L (1 a(z]), 008 € 2900, and y €
2570 Gl 1,0,6,51() i @ olomial n  of degre ot mostZp(zl) 42

2 Forallke {1, i), L€ (0, .. .s(a) ~ 1), @,8 & 2D, and
362, Gkl 0,67 = Glkod+ 1,0, 6,510 + Gl&.1 1 1,0, 8,3]().

5 Forali k€ (1, rls), L€ L. os(zh), a8 € 240, y =
(oo me) € 20, and 3 € 2, Gl 8,7] = Glko 8. 700m)s
where )

4 Porallke (1" r(z)) anda, €24, Gk0,0,0,d = Ru(oy),
uhere ¢ denotes the empy strin.

5 Forevery ke (1. r(e)) and .6, € 22050, Gk, (1) 0,,7) =
Ruci(ey DRt (5).

For each k, 1< k< r(el), and a, 8,7 € 2400, defne
ke, B,9](6) = Reca(0 = @y + 0, (9= 1)y +)
Hore (3~ )y + s shorthand for

(n =)yt s (e = )9 + o)
and (8= 7)y-+ v is shorthand for
(B =10+ 3, Bt = T+ ).

where for ench i, 1< i < (e, oy, G and 7, aee respectvely the ith
component o a, the ith component af 5, and the ith component of . Then
e ave the folowing resur

Proposition 615 For all k¢ (1 .. r(l)), and o, 5, € 220D,

1. H[ky,.(v) is @ polynomialin y o degre at mostplz]) +2,
2 Hik.o,89](0) = Ruca(a,7), and
3. HikoyB3](1) = Riy(,6).






index-147_1.png
64 MIP=NEXP 13

a8 € @)D, 5 = (n.....7) € (Za)' wad all polynomils 4(s) €
2y of degres ot most 202 + 2, i vas £ G'kiL B, (mod @) and
w1 = 90) +90) _(m0d @), then o0) # Glki,,Ai2I) (mod @), and
i, by Lemm. 6.2, chere are at most (1) + 2 valos of 1 such that
s = Gl anfy] (mod Q), where 7 ). This implics
it for ol K € (1, (D), € (0, .o a(=) ~ 1}, asf € (Za)D,
7= (ny...om) € (Za). and ol plymomials oy) € Zol] of degres
at most B((z) + 2, f 91 # Glk,Lf ] (mod Q) snd g passes the
part (i) of Step 2(0), then, or 1.1 chosen uniformly i rendom in Za,
with probabilty o most GlkLas,y] (mod Q), where
7= )

thermore, by Proposiion 6.15, for all € € {1, ..., r(z)), 0,6, €
(214D, snd all polynoials h € Zoly] of degre st most =) + 1, if
haey # Gk () 0, 5] (mod @) and vy = HOJRC)  (1od Q)
then A # Hk,0,8,7], This, or all k€ (1, ... 7(=)}, 00,7 € (Za) 7D,
and all polynomiala € Zas] o degre st most p2) + 1, if ke #
Glkys(z) ) (mod ) and h pases the test i Step 2(0), then, o
chosen uniformly t andom in Z, withprobabiity at most K2 v,
Gk - 1,00, (mod Q), where = (-~ a)p-+amod @ snd 4 =
(3= )p'+7mod Q.

Finaly, 1 % G0,0,a,6,e(mod Q), then th verifr dtermisist-
clly refets = a Seep 3.

By the above observatious, the probabilty that the verfer accepts = s at.
most CEDZECIDN Since () = () 2p(n) + () +1) +3 and
Q> 2704, this i at most 3. Ths, the probabity that the veifer ccepts
ia t most § + | = §. Hence,the protocol i sound

Q Cuimels
QO Lenma6i1l

6.4 MIP = NEXP

In this soction we study the powe of maltiprove intractive proof systems.
‘We sipulac that the provers here do not talk smong themselves; otherwise,
e prover could simulate all theother provers, and thus, the computational
povwer of the system is the same 4 that of PSPACE. Wo wil show tha there
i big Jump i the computational power when one extra prover s added to
the system. Nomely, we il show in this section that the fuo-prover nter.
acivo proof systems recogniz precisely those langusges in nondeterministic
exponential time. We also show that with mre than two provers the verfer
can recognize all languagesin nondeterminisic exponental time.

Theorem 6.19 MIP  NEXP.
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Step 1_Ovtain from the _prover 3 _prime_mariber @ In the er]|
e 2 g e it o 1 il St s = 1
= G and

Step'3 epet o i o
(4) Repeat the fllowing fo £ = 1,

) Tes whther 1)
ey ejoct . Otherwise, procod t the part (i

() Randoriy smple & mumber 3 € Zo b5
Alscrithm in e, 4 wih 3= Q and ¢ = mle). Sek wet =
someid

) Ly oy Obtan from the oracl a polynamial h € Zql) o
egrae o st 51+ 1, which the race e k2,29 o
Qe kb v = WO (it @) 1 te st fus,
iy et .

(€ Ramdomlysample o b 1  Zo b runing theSamling Aerihm
nFig 84 with M ) Set -1~ hs) mod Q. Set o
e ot amod Gt e 3 Dty Q.

o 3 Tst whether wo = Ra(a, ) (mod Q). I the et scconds, ccep .

otherwie, et .

T,

Ineractive prtoco for PSPACE

Proof of Claim 617 Supose that z € L Then ugupo =
G210, Coe, Gy, ) = 1. By Proposition 6.14,forall k {1, . (1)),
e o,....all) = 1), 0.8 € 10D, and 1'= (..., 1) € (Za)h if
s = Gk, 5.3] (mod Q). the prover can provido 4 polynomial g €
Zgly] suchthat e = 90) +9(1) (mod Q) and such tht,for all v € Za,
S0ne1) = Tk 1,0,8,7] (mod Q). where )

Furhermore, by Proposiion .15, forall k€ {1, ...r(1)
(@, it sy # G, (13,8, 2] (mod Q), then the provr can
provide  polyionial h € Zalu] such that thap = AOVAC) (mod Q)
and such v, for ll 1 € Zg. h() = Gk~ 1,0,0,] (mod Q). where

{'= (v~ a)r +amod Q and ' = (8- 2)r +7med Q.

By the shove observation, thae is & prover P such that the vrifer
accnpts  with probabilty one through iteroctions with P assumin that
sampling ertr never occurs. Since the verfr accepts when a sampling error
occurs, the probaliliy that the veifer accepts through ineractions with P
1. Thus, the protocel is complete. Q" Claim 617

Claim 6.18 The protocol is sound

Proof of Claim 618 Suppose that 2 ¢ L. Then G'r(z),0,Cos
Cind = Rea(Cons Crin) = 0. 80, (a0 # G'r(1z),0,Cints Cpim ]
By Proposiion 6.4, for il k € {1, .. i), 4 € (0, »
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Step 1V eaccutes te ollowing 1p(]) e
) ¥ simulaes ¥ on inut £ o 7 s the orace
(5] V call the Sampling Algoithm (n Pl 6.4) with M = () and t =
) and- v 1o st ona ery . that s made durig this round
S simiation and sk 3 1 Py
Step 2 V'ikiepi = i for sl £ 1< 1 < 10p(), th amswer of P, o, s cqual
B hat of Py and the rmber o sulationt of N om it = Ut accopied
o et 5. Otharwis,V reects .

Fig. 6.8 The two-prover proocol

protocol. We may assume that there is » polynomial p such that, for every
2 € T, N on lnput = always makes exactly pz]) queries, Wo may also
sssum that the oracl provides singlebit answers. Lat V be o verifir with
o provers, Py and i, that, on Inpu 2, executes the algorithm in Fig. 6.6
6.4.1.1 Comploteness of the Protocol. We caim that this s a complete
v prove Intractive proof system for L. Obviouwsly, V is polynomial e
ounded. We need toshow that the protocol s complte. and sound. We irst
show that the protocol i complete. Lt be any member of L. The fllowing
e, called Chobyshev's Inequaliy, which we state without proof is well
Known nd usefl for our analyis.

Lomma 6.22 (Chobyshev's Inoquality) Let X be a random variable
with expectation o and variance 0. Then for ail§ >0

P -olza<

Sinco 2 € L, there cxists an oracle H relative o which N on fnput =
acceptswith probabilty p > 3. Suppose that both Py and P provide anewers
e i they wore H. Then the consistency tess between P and Py ol succed.
So, the probabilty that V accepts s aqual 1o the probabilsy that more
han hlf of he simulatons in Sep 1 accept. Since the coin fips of e
independent, the expectation @ of th numbet of acceptng computatons that
V finds s p(105) > 32 and the varisnce o of this mumber i (1 - p)(109) <
132 wher p s shorthand fo (). Then, by Lemm 6.2), th probabilty
hat the mumber of ceepting path s ks than o equl o 9 i lss than o

o
R
e

This quantcyis e than s < } or p(n) > 2. As wecan make thepolynomial
p arbitrarly laege, the probablliy of scceptance i greater than § for .
Hence, the protocal is complte

Fo-al
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6.4.1 Probabilistic Oracle Protocols and MIP C NEXP

In arder to prove Theotem 619 we introduce the concept of probabilsic
oracle protocols.

Defiition 6:20 4 language L hs o probabltc cxacle protocol i thee
esets  probablistic polynomialtme.boundedoracle Tuing machine M ch
e, fo evry € 5, the following condtionshld
1. (Completeness) If & L, ten there existssome orale H such hat
M an'input  relative Lo H acepts with robobilty geter than 1.
2 (Soundness) 1/ ¢ L, ten for evey orce H M on inpt = rltive
o H acepts ithprobally ss than

The diffrence between the above definiton and Defsiton 6.1is that here
only one prover i nvolved and the unique prover behaves a3 an oacle.

Thoorem 621 For every language L, L is in MIP if and only f L has &
probabilistic orace protocol.

Proof For the ‘only-If" pat,suppose that L i a langusge in MIP. Take »
verfer V witnesing L € MIP. Le £ > 1 be the number of provers that V-
communicates with. Without los of gonerait, we may sssume that provers
provide sigle bt answers. By following an argument sl to the ono we
i the proofof Lerma 6,10 on page 123, we can asure that these provers
are deterministic

We mosifythe queriesof V. Let 2 be an it o the system. Suppese that
V i about o make a query,say y. Lat i, 1 <1 < &, and J > 1 besuch that the
Query y that V"1 about to make i 0. query o P, and V on input 2 has made
31 queriesto P o far. Then we replace this quey by (z, 15,3, W), where 2
T the input to the system and W isthe hisory of communication bitween V-
and P, More precsely, W = s #bySyn S - Sy,-1#8,-1, where for each
£1 S €< 51,y s the fourth component (the y part)of the h query of V-
0 P, and b is the answr that P, provide o that query. This moification
males the queies of V. unique, in the sense that no queries are made twice.
This modifieation does not <hange the probabiity of aceeptance since the
additional four pleces of nformation, e, %, 1, and W, ae alredy known
o the prover.

s the provers are doterministi and the queies are unique, we can turn
¥ into an oracle Touing machine N by replacing the provers with a single
oracle. Then for every = € £, the arget probubilty that N on nput
‘ceepts with any oracle i equal to the lagest probabilty that V' on input 2
aceepts with any st of k provers. So, the two conditons in Defiition 6.0
hold. Thus, £ has a probabilsti oracl protocol. This proves the ‘only-ir”
past

For the " part, suppose thatthere i » polynomial tme-bounded prob-
abilstic oracle Turing machine N witacssin that L has » probabilstic racle
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6412 Soundness of the Protocol Next w prov that th prooce s
Soun. Lt 2 be sn abitrry member of T Lt 1 = o] anid 7 - 1p(). Wo
et show that, o every i of provess (Py 2), the probabiy that V
S input 2 ccepts Crough eraction with i an P i strcly s than
" The number of times that the sampling algorithm is executed is 10p(1z)
“The probabily that the sampling lgorith s s s than 2-1). S, the
probubily tht.» sampling <ttt oceusdaring the exacution of the pife
protocol i 242 This st most o pln) > 0

‘We claim that a pair of deterministic provers (P, Py) can achieve the
ighest acceptance probabity - T see why, ots that we can sesume tht
i gonof (Pr 3 s to masimize the accptanceprobabily of - o input
= hovgh itaracons with thrs, Alo, ot thet  addiional cole of Py
is cortctly to guess the answer that P, provided. Upon receving  query,
P an we it ulimited computaional power o cxeulte the probablky
Gha P, provided 2.0 s snawer. Then Py can masimie the probabilty
Ly answering with .0 fthe calelated probabily s grster tha or cqual
o § and with 8 1 othervis. S, the stategy of Fj can bo deerminisi
On'the other hand, suppos tha the vy 1 qury of o nput 7
iven to P, Havingunlmited computationa power snd knowing the protacs]
o Pu P can calelate the probabilty of accstance o ¥ on input 2 In
Ch chse when . answes it 0 and the probabiy o scceptancs of V
on lopu 3 when i e with a 1. Call ths probabllie, 2 and 1,
Tepectively. T masimizetheacceptance probablty o V on iput 2, i
Getrmiitcally et e snewer s follows: anwer with + 01 o > 0, and
ith otherwise. Ths, P, ca anawes the very st query determinisicaly
ithout decresing. the probabiley of aceeptanc f V. Dy repeating this
argument for the penulimate query, we can ague that P, can answer that
uery determiioialy ithout dectensing he aceptance probabity of V.
By copeting this argument over nd ove agan, o con argue that P, cu
answer very query determiisticall, without making it e lkely that V
il oo

Sinc P, i deteminsticand V makes oy ons ey t Py at.each round,
o very £, 1% 4 m, the Fantion of y . round § can b viewsd s hat
of an racle. Wo can ssume tht at th beginning of ach round, P, decidos
its strategy for that round. This selection determines the probability that Py
provide an anewer chat i diftset fom that which P, would provide. S
the overall trtegy of Py can b parameterise ing m rel umbers n the
interval (0,1) For each s (o, -« o) € 0,1 we 35 that P, takes s
atrneny o all §, 1 £ <, the sistegy of P n round s t provide
o snwer difernt o what 7, wod providewith probabiley . Wo will
o o that there exists s 7 > 0 s hat, o ol > i, i ox
ol € 0,1, the probabilty that ¥ sccepts i th case when Py aken
on cestrtegy s sl e than |
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Proof Let L € MIP. By Theorer 621, there s  polymormial ime-bounded
probabilistc orscle Turing machine M satisfying the compleness nd the
Soundness conditions in Defition 6.20. Then, for every = € 5, 7 € L
n orace. relative to which M on input 7 sccepts
ey grester than 3. Let p be » polynomial bounding.
the runtime of M. Then for every = & 5 the queries of M on fnput
are of length at most p(). Then, for every z € 5, = € L if and only if
here s some B € (5°)<7(%) such that M on = reative to B sccepts with
probabily grater than §. Without oes of generality, we may sssume that
st cach computational step, M has at most two possible moves and that ll
possible moves that M can make are inesrly ordered. Define N to be the
Hondetesministic Turing machine that, on input 7, sxecutes the folloving:

@ For each y € E* having length at most p(|z|) N guesses a bit b(y). N sets
B to the set of all strings y € £* having length st most p(jz]) such that
i) =1
« N s count 5 to 0. Then, or ench 10 € BP0, ¥ doe th Gllwing:
= N dteeministcally simultes M o input  withcrale 5 along path 1
a8 follows: For each i, 1 <1 < p(z), f there are two possible moves that
M on nput  with orale B can make st sap i th curret simulation,
the N picks the o vith th lowr srde I,  an the on wich
he bigher onder I = 1, here s the th symbolof .

= 1630 o nput 2 witharocl B accpts alang pth u,thn N ncrements
Syt

« N acoupts 2 16 /2571 > § and reets othervise.

1 ey o s that fo every x € T, N on nput = aceepts if s cnly if.

Chre i omo B C (<D suc that M on 2 elativ t B accpts ith

probabity grate than 3. So, N docids L. The runtime of N i 290 for

Some consant > 0. This, L € NEXP. a

6.4.2 NEXP C MIP
The rest of the section proves the other incluson:
Theorem 6.24 NEXP C MIP.

Lt L be o language in NEXP and L Ny be » onetape NEXP machine.
that decides L. By Theorem 621, we have only to show that there i &
probabilstc pelynomial time-bounded oracle Turing machine M witnessing
that I has  probabilsic orace protocel. Our proof i in thee phases:
Phase 1 conversion of the membership question n L into  logiea expres-
Phase 3 conversion ofth logical expresson nto a arthmetic expresion;
nd
Phase 3 development of an interactive oracl protocsl for veriying the
Value o the arithmetic xpression.
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Let o, o € (0,17, Assume that Py taes an ostrsegy. Snce
2§ I, for overy ovcle G, the probably that ¥ acopts = wih Q s the
araclislss than . This, for evory i 1 < < m, the probabilty that
e silaion of ' on npit  in sound § through nteractions with Py s
accepting I sty e thn
1 1
mnfubvo} <o

Thus,the oxpected mumber of acceptng simulaions that ar generated s
s than 2+ Sy, . Als, the variance of the number of scepting
simulations that ars generstd i s than 5y, (] + )3 20) < 7 +
5 Now e i e h o (1), e oy s
V aceepus 2 ot most §. o prove the claim, frs suppose that 1. 1 <
5. Then, by Chebyshev’s Inequaly (Lo 6.22), the probabiiy that the
b of acoopting smulations that ae genersted 1 at st i s than

3+ e me

G-z-@ "7
Thi i o ha ) 6081, T, tho prbablty ths ¥ cpt 2
hen ter b 2y g o s s o .

Next suppose that T,c,cpm 0 > - ’l'hzn, under the assumption (*),
he ot e of ot o S 7 B it P g ok
one 1 55 il b vaians of the manbe 1 e th 55 Th,
o Chrysher Tnqualty (Lemina .2, the probabilty s thte sz 10
more than § = 2p(a]) simulation rounds in which P, disagrees with s 1s

o tan
B ww
- m Bl
This s e than 4 for i) 2 5761, Frhermor, i ther e () i
tion rounds s Shich 7 sares it P e th protabilty ht the
egremens s v dstoered s 1 ot

(i)™

“This i e than i for ) > 5761, Thu,fr all n suficiendy o, the
probabity that ' accepts 7 when thre i o samplng et s e than |
Since samplingexor makes V ccep and ocurswit probbily e th
. the probabilty that V acepts 1 e than . Hee,the protocl s
Sound. Thisproves th theorem. Q" Thworom 121

Now we turn 0 the proof of Theorem 610, We it show that every
longuage n MIP i ndeed fn NEXP.

Theorem 623 MIP € NEXP.






index-143_1.png
63 1P -pSPACE 10

(i) the changes coresponding to the transiton (4 a4), (q, ) are made
0 the variables pos, oty . sty 8h, YTz, 40 Y7, 30 o other
places o and  are equal 10 ach other;

otherwise, A@MB)p(afr) = 0. Thus, for all a8 € (010D,
N@M@)p(a,8.7) = 1 i both x and 3 aee legtimate and 7 s the con”
guration that resulis from cr in one step of D and A(a)(4)p(a, 3,7

otherwis, For each vaiabl y that s present. n A, the dgree of y n X i
¢ st () iy s & pos vasiable, a most M if it i . st variabe, and
2 most N if i s & sy varible, On the other hand, the degee of each
variable in i at most 1. S0, the degee of each varible in R is a most
max{p(l), M N} 1. Sine for very n 2 , p(n) > max{M, V), thedogree
ofeach vaiabl n Ro s a¢ mostp) + 1. Th st has only polynomilly
‘many lements. Thus, th expresion for Ro can be computed n e poly.
nomial in 2], Now given @ > 2 and 0,5 € (Zg)1%D, Ro(a, ) mod @ can
be evalused in time polynomial in =+ log @, This poves th propasiton.

Q" Proposition 612
For ach k € {1, .. (=]}, define the polynomial Ru(é,0) to b

5 Res€m e Racalon 20
B ahdon

Then it i easy to see that the ollowng proposition holds.
Proposition 6.13
L For ey € 0, ), Re s et mst o) 1 ach
2 Forall k,0 < k < r(le), and a,§ € {0,100, Ryfau) = 1 if both
 and 8 are lepitimate and 0 is reachable from a by D on input z in
Cractly 2 seps nd R, B) = 0 otheruise

Now, let g € {0,100 be the inital confguration of D on input =
and Cyyn € {0,1)20%) be the unique accepting configuration of D on any
input of length || Then

2L = Reup(Cont O

We dovslop an inteactive protocol for verifing that Ry (Con Crin)
1. To explain the protocol we need to define some notation. For each k €
DL€ 0 D), 008 € 207D,y = () €

I
2

Glkbagal) = 3
i easielon
Beca(on e theton o))
Recallon e et seaga) B
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So,if 8 < Q. then there s ot lesst one £ € {0, .., Q1) such tht for ol
ik 1£3 < 'S 6 0,(7) 4 u(r) (mod Q) This, for ll i, 1 1< n—1,
vl .o deind o long o the e  of candidate hat # eneraes
sl 02 < Q.

T describe how F works we need to intodics # new function h. The
omain of h, domain(h), i te et of ol squce matice N such dha ench
ey of N i  plynonia beloging 1o X having degee a most dim(N).
For ll N € domain(h) perm(N) is  polynomial beonging o NX] havng
degse ot most (dim(N)). The valus of A(N) i an integer shat encodes the
Confcensofperm(). Fo each matrx N € domain(h), et £(N) deore he
Sl nteger ¢ such that every coucen of every enry of ¥ i s than
21 Then ther it som ftegr cnstant ¢ > 0 such that, for ll matices
V'€ domin(h) and il 1,0 ¢ < (dm(N)", the coeicens C, of X' in
perm () i e than

mi(m 4 Y < 2, ©1
Then we define the value of A(N) to be
5 ey,

Then by equation 61, the conficients Gy, .. Cys can be recovered from
A(N). Furthermore, we claim that his a #P funcion. To seo why, consder
a nondeterministc Turing machine U that, on input N, does the following:

U tests whether N € domain(h). I the tes fals, U immediately rejects N.

U gueses § € (0, ... (Am(N))"} and for ench 5, 1 3 S dim(N), an
inegerd; € {0,....,dim(N)). U tests whether § = 5, cqmsy . 1 the
et ails, U immedinely rjects . <

o For oach j, 1% 5 < dim(N), U guesses sn inoger p, € {1, .. dim().
Let 7 be the mapping from {1,....dim(V)} to itslf deined for all i,
105 dim(N), by 70) = pi. U teste whether = is » permutation. If the
et s, U imamodinte rejcts N.

U computes the product P for ll j, 1% 5 < dim(N), of the couficent of
X4 the (7, 7(7))th ey of N.

U gueses an'intoger k, 1< k < 244mM 01, and then accepts N
otherwise

It i aasy 10 see that U can b polynomisl time-bavnded and, for all N €
domain(h), #acey (N) = h(N). Thus, A € #P.

Since A s & member of #P, by part 1 of Proposition 63, there is &
polynomial time reduction to (R, Ry) such that fo every N € domain(h)
B(N) = Ra(W¥, perm(Fs(N)). Defne the acton of the oracle F a1 follows:
On input N € domain(h), F does the fllowing:

© F computes W = Ry(N) and evaluates E(W) to obtain candidatos
Vi 0y for perm(W)
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Proof Let £ € IP. Take a intractve proof systom fo L. Let V b the
vrifie and p be o polynomial bounding th runime of V. Without s of
enerality, we may ‘ssume that the prover provides a single-bit answer to
ench query of V. We may also asoume tha thete exist. polynomils m, g, and
7 such that,fo every input, the verifer makes xactly () querie to the
prover, each having length (), and tosss exacly () coins befor the
Brst uery, afte the It quers and between every two consecutive queries,

W can asume that the objective of P i o maimize the probabilty that
¥ acoepts,regaales of whecher he input belongs o L ot ot o s why,
suppose that the input beongs 1o L. The completences condition reires
hat thee i a prover that makes ¥ accept with probabity more than 1,
0 hi i the same s requiing that the highest acceptance probabity tht
s achieve by any prowe i mor than 3, Next suppose that th input docs
ot belong o L. Then the soundness conditon rquires that rgardles ofthe
protocs ofthe provr, the acceptance probabilty of V' a les than 4. Thia
i he s eqiin st e ihes probbilty tha i e s e
than 1.

W claim that the highest acceptance probabily can be achieved by &
proverthat worksdeterministialy Here the reader should be cautoned that
dcteriistic proves aro no ecesarly orals o provers can selat theis
‘answers based on the hisory of communiction.

"To prove the claim, st note that o can asume that ther s ecursve
function 1 5 — N such tha,fo every = € 5,V on input = sk exacly
1(2) queies to the prover, reardies of i cin tosss and o the prover.
Suppose thee i o such  exists. Since V witneses that L € IP, there is
prover P such tha, for every = € L, V on input = runs for at most 7(z))
regarlss of i coin toses and of the prover. Defin V 1o be the machine
that, on nput. 7, simulates ¥ on input £ for st moet () steps, .., V on
input = alon the simulted path attempts o make the (([)+ )t step, V"
aborts the smulation. Wi exceutin the smulation V7 counts the urber
of auerien that V on input x makes totheprover skong the simulted path of
¥ on input =. When the simulaton s cither completd or aborted, V adds
dumm queris (e, about the empty string) to make the total mumber of
uericscqual 1o (1) and then accepts itV on input = long the smulated
path scoepts. For all = € 5, the number of qurie that V" on input. 7
makes s p(z). For all 2 € L, the probabilty that V" on input z sccrpts
through interactions with P is equal to the probabity that ¥ on input =
accapts theough interactions with P. For all 2 € L and for all prover , the
probabilty that V7 on input = acxpts through interactions with P is not
Sreaer than the probability that V- on input  accepts through interactions
with P So V" is an interactive proof sysem fo L.

Now, supposo that V has Just made e st quey to the prover. Sinco
it can compute the funcion / usin it unlimited computational power,the
prover Knows that this is the lat query o V. Lot p and o ropectivey bo
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« For each i, 1< § < p, F computes the ith polynomial g, from Fa(W, )
by taking modulo Q.

 Trash al the candidate polynomils of degree greaer than m?,
the dimension of N. Als, if s polynomal s repeated in th I
duplicates.

+ Return the lst of emaining polynomials.

Since Ry, R, snd B are all polynomial time computable,the procedure 7
rune in poynonia time, So,there is some > 0 such hat, for ll N €
Gomaia(h), the e of candidtes that  prodces o put N s bounded
by (@m() + €V

During the execution of the praceduze for computing perm(4) mod @,
for cach quey N made 10 7, dim(N) < 1 < [A] s £V) < 1og@ < IA]
Suppos that the prime numbers Qs ..., e n the interval AP AP}
o some 5,1 > 1. Then the mumber of cndidate ¢ that 7 autpate st ach
ey during the computation 1 ¢ st

where m
. ciminate

(1414 vlog A)° < A

fo all but initely many A. The requirement for Q Is that €% < Q. So,
A= < [A" has 10 be met. Let § = 2a +4 and 7 = 20. Tho nomber
of prires we need s | AT The fallowing theorem, which we state without &
proaf, i well known and seful.

Theorem 6.8 (The Prime Number Theorem) For evey integer > 1
there are at last 3 primes i the iterval (1,24

Since > 1 and 7 = 28, by Theorem 6.5, there ae st lenst A7 primes
i the nterval (1419, [ AP Since the argest primo we deal with i at most
AT, by a trivial division procedure we can fnd in time polynomial in |4]

the primes we need. This implies that the permanent Is polynomial time
computable. This proves the theorem. a

6.3 IP = PSPACE
In this section we prove the followin resul.
Theorem 6.9 IP = PSPACE.
‘We divide the proof into two pares: IP C PSPACE and PSPACEC IP.

6.1 IP C PSPACE
Lemma 6.10 [P € PSPACE.
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Step T 16w of the form 30 S Sy gy, o do G fllowing:
o 55w
(6 For ah oy i et (o) + ). do he i
7 Shmlat the computation of ¥ om I = aone path ¥ smvring|
U for ench .1 5 % (1), th prow anewes 4o i f0h qory
s,
(5) Check whether V acceptedin thesimulation a whotherfr every
T2 12 1), th st query of ¥ i th sirmlation e .
(i) T bt s s, increment S by 1
(@ Reburm Syt
Sep2 I w G of e fom  u#hSo S then et
" (RCoK0(z, o) 0z, w D)
Step 3 I ciths 1= %01 0 of th form 3 S - S o some k <
"le) then do the alowing:
{055 100,
6) Forachssin = o bength i), cmpue = RGHP(, ) and s
(© Retuen 5.

Fig. 6.3 Algorithm K508 for computing

some pieces of information need o b stored: the current locaton in the
RCOHP program, the sum $ (Scep 3 only). the curren vlue of p (Step 3
anly), which of the two recuriv cals i beng exccuted (Step Z o), and
he output of the frst recursve call n the case when the second ecursive
call i about to be made in Step 2. Since the total mumber of cin tosses
of Vi (qa] + 2. R hos precison of (a(z) + 2)r(z) it So, the
amountof nformation to b sored is O((a(z) + 2)r(() = Ola() )iz
Thas,the entie procedurerequies O(q((z)*r(z)) spac. Hen, REOKP is
polynomiskspace lgorehm, and thu, L € PSPACE. a

6.3.2 PSPACE C 1P

Now we prove the other inclusion of Theorem 6.9
Lomma 6.1 PSPACE C IP.

‘Wo st provide o brif verview of the proof of Lemma 6.11. Lt L be an
arbiteary anguage in PSPACE. Let D bo » polynomia space-bovnded Turing
mochine witheasing that L € PSPACE. W develop o protocel fo veriying
i of D. The iden behind the protocol i Savitc's Theorem, which

log ), nondetermin-

isic S(n)-space-bounded computaion can be deterministically simulated in
space S7(n). To describe thetheorem we us the concept of configrations. A
configuration of the machine D describes the contents of ts apes, the posi-
ions o it head, and s state. Hore wo sssume that D is 2 oneape machine
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he highes probabiliy of acceptance that can be achieved beyond this point
provided that the prover answers with a 0 snd provided that the prover
nsvers with a 1. These two probabilie are well-doined, ince the runtime
S V' i bounded,so using ts unlimited computational pawer, the rover can
Caleulte them, Parameerize the stratogy of the prover st this very paint
with 0, 0 < < 1 in such o way that i provides a0 s the anawes with
probablity a. The the overal probabilty that V aceepts beyond this pint

ap+(1-a)a =0+ (p-a)o.

This is maximized st o= 11 p> 0 and at = 0 p < o. So, i oder to
maximize this amount,the prover has only deterministically to answer with
S0 > o and with » 1 otherwise. Thus, the strategy of the prover at
Chis point. could be determinisic. Since the same argument <ould be made
for any “query” point, working up from the ast query to the et query, we
can argu that the entir stategy of the prover could be made deterministic
without dectesing the probabilty that  accepes.

For cach 7 € I It H. denote the s of all possble communication
histories between V' and some prover. Here a communication history between
V7 and  prove s the record o ll the queres and answers exchanged botween
them before some computational step. More precsely,for each x € I, the
Tolloving srings constitute Hy:

« The empey sting A
Al suings of the form 1,8 -+ Syu by fo some K, 1 < k < plla),
e un € DD, by, by € (0,1). Hre for aach i, 10 < K,y

i query of V-t th prove and i the provr's v t 4.

« The swings of the fom b - Sys- b 1Sy o som , 1< & <
Bl v € S by, by € (0.1), Hore fo ench i 11 <
ki e 8 ey of V o the prove,for each iy 1< 4 < b - 1, b i the
provr’ answer to g, i he anbver (o g 8yt dobe gen.

For all 2 € 5 and w € I, define Rz, u) o be the masimum probability
that 'V on fnput = accepts when the history of communication has 1 18 &
profix. Thon R, ) s the highest aceptance probabilty that V' on input =
through ineractions with any prover. So,fo all £ € £,

3

rel e RX 2

b

To provethat L & PSPACE it now suffices to show that Ris polynomial-space
computable.

Cosider the_procedure RCOWP, decribed i Fig. 63, for computing.
R(z,u) given = € * and w € A,

I i aasy 1o see tht the procedure works cortectly: Let us analyze the
space requirement of this procedure. For llx € 5, BCOMD(z, ) hs rocursion
depth 2q(1=). When a recursive cal is made In either Step 2 or Step 3(b),
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and that there exist a polynomial 5 such that, for all € 5, the confi
i at cach step of D on input  can be encoded a8 & sring in S
“wo assume that, for ench 7 € I if D on input 7 accepts then D dons
50 by erasing ol the tape squares it has ever visted and moving s head to
positon 1. This implies that for every = € 5*, ther i a unque accepting
configuraion of D on input z. Finaly, assume that there i polynomial -
euch that, for all € ¢, D on input 2 halt at step 202 Then, for all
€ B, € L if and only if the unique accepting configoration of D on input
= i reached in exactly 204D stepe,
Suppose we are. tating the membership of = € I* in L. We define 8
Sumily o polynomials Ry, 0 < 5 < r(1z), with the fllowing property: For al
5,05 < r(l), and allconfigurations C and " of D on input 7,

1 i eachabl rom Oty D
By = { inexacly 3 st
Ooberuin,

1 ac espectively theencodin of C in EX04) e he ncoding
of G B0, L Gy b th il coniuration of D o imput 2. Lok €y b
e accepting confgorationof D on input ,in whichth tapehewd of D is 1t
position | ancachtape squace has  biank. Loty a0, besespectively th
Encodingof Co anc the encodingof Cy Then = € &= Ry g0 = 1
We develop  protocl fo tstng whether B (1 1) = 1. The basis of
th protocs i an rithmetie chaactsization (eled armetization) of the
prodicate R

“Towo propetis of R play a crucilsole bere. First,for every & > 1, and
vy puit of confgucations C and C' of D on input 7,

Rafuww) =1 o=
(3 € BON(Ruca(w2) = 1) A (Recalzw) = 1)

where w i the encoding of C and ' s the encading of C". Second, the

predicae Ra(s, ) can be writen as  polynomial of 25(n) varisbles (cor.

Feponding t0 the bit of 10 and ) having  smll ot degree.

Proofof Lemma 6.11 Lt L be an sebitracy angusge n PSPACE. Let D

be s machine witnessing that L & PSPACE. We frst make fow assumpt.
about the machine D:

1. D ha cly one taps and the te @ cneway
2 The sate st of D 5.Q = {a ) and he lphabet of D s T =
(o o).
3. Thie i’ polynomial p avin th flowing two propertis
« For vy 2. 3, D on input a4 ot ) sapa sauaces
© For vy 1> 0, pln) 2 max(M, ).
4. For each n > 1 ther i  anique accopting coniuration af D for any
input of Ienguh . For exampl, for sl it € T we an assue that.
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Define
Equal(s,0)

Then, for all ¢ € (0,1), Eual(h,c) = 136 b = c and Equl(b,c)
otherwise. For cach intege k > 2, and & boolean variabes i, .1y, deine

Uniglkl(ys, .y.):(n—nu—y.v) I 0-vw).

e

Then, o ey k> 2. UnilH, -.x) s plymonmisl of g
‘each variable. Also, for all k > 2 and i, ... ,ux € {0,1}, Unig[K]( )
et o 1 sl onf - 51 s e 0 i, Lt
5 of oyl i o D o
= (ki@ 1S i< AL S5 <MATSREN A
1SISMAISmSNADE(+1,0,-1} A1 <i+d<plz) A
((g5,00), (@, 8m,) € A},

Dene
Rol,0) = NOXD 3 pl6,0.7),
Here
xO=

o=l (posl - b0tz UnaMI(tg, .. M)
I vnialNsymels 1), .. symeli, NI,
=

o=

o=l potall .. poslp ) UnialM] st ...

1 UnialNjmli . ... symals, N,
s

and, for each 7 = G
)
posglilposale + dsteelttelkJsmel, L vmel + dr ]
T Baal(symet,ul, svmlt, v
i NG 1SN

Since Unig checks that exacely one of the input vaiabes s 1, A()
f and only if € i lgitimate. Similarly, A(9) = 1 if and only if 0 i logit-
mate. Ao, for all Gtuple 7 = (3, kym.d) € S, and @, € (0,110,
M)A @)pla,fir) = 1if

() both o snd  sre legitimate and

Enlrymo &) €5,
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‘when it i about o accept o refect y, D writes a blank on tape squares
1,7l moves the head t the lefmost posiion, ad then eners &
g accept stae.

Let &.C (@T)x(@T'x [+1,0, 1)) be the transiton functon of D, where
({a,0),(¢,)) € 0 signfies that if the currnt sate s g and tho symbol
currently Scanned i o, then in one step D overwrites the currntly scanned
a by an o, enters state ¢/, and changes the head positon by d squares on the
tape.

Let 2 € 5 be a siring whose membership in L wo are testing. As n the
tableau method, we encode each configoration of D on lnput 7 using a se of
boolean variablés, We willus the flloving boolean variabies:

o ], M.
For svery i 14 < M, ste{ = 1if and only if the curent state is ..
o ponl i =1, . ple]).
For every 4,1 <1 < p(ll), posf] = 11 and only if the head s located on
the ith tape square
o syl dli= 1, a5 .
Forall i, 1 <4 < pije), and 5, 1 £5'< N, sy, )
s stored n the ith tape square,
Let s(n) = M + (N + 1)p(n). Then  is & polynomial in n sad the total
mumber of varables sed i (/). Fix an cnumeration of the s(e]) variables.
Let a be an asignment to the s(J]) variabes. We say that o is lgitimate f
the folowing conditons hold:

o There I exactly one i, 1< § < M, such that st

« There i exactly one i, 1 < < p(), such that posf

< For every 1 % 1 < p(Js), there is exactly one 4, 1 < 5 < N, such that
syl sl =1

Then, there is & one-to-one correspondence between tho s of all potential

confirations of D on input = and the et of ll legtimate assignments.

Proposition 6.12 Thersexistsa olynomial Ro € Zis . g s -+
) that satisfiesth fllwing contions:

1. An expression of Ry can b computed in polomial time. Puthermore,
Jor any iteger Q 2 2 and 0, € (Zg)"0%), Rola,) mod @ can b
cvahated in fre polynomial i 5|+ 108

2 Ry s poliomiat in degree t ot plz) + 2 i each varible.

3. Rorll D€ (0,1)"0: Ry(o, ) = 1 3f bt and o tmate and
D on input x reaches 8 from i o stp and R, ) =  otherwise

f and only f 0y

Proof of Proposition 6.12  For simpliity we attach thesubscripts € and
10 the abov () variables to indicate that they are sppearing i the €
part and in the 8 pat, respecively.
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disinet primes Q1 -, @, Once these values have been computed, since
Q1+, 2 2 > 2lperm(A)], using the Chincse Remainder Theotem, we
i recover the exact value of perm(A).

"To compute perm(4) mod @ for a prime number @, we execute the fol-
lowing algorithm that uies & subroutine 7.

Stop 1 Set Ay to the n x n matrix such that for all Integers § and .
14,5 S it (5 )th entry is oy mod Q.

Step 2 Sat Ay o the n x n matrix Sch that for Bxecute the following for

=1

(8) Construct from Ay an i x§ matrx By(X), defined as

T A

Here forevery ky 1 < k 41, ayeisthe (1, Kth entey of Avss, A
denotesthe (1 Ktk minor of A1, and

ao= I1 X-i6-i)
St -

where for ol € (L, .., i+1) = (K}, =) is the mul
inverse of i in Zg,

() Present B,(X) to the subroutine 7 to btain candidate plymomias
G190 o perm(B,(X)). whete % < @ and these pynoms
repairwise disinc modul Q. St 7 o the malles € {0,
1) such that forall .k, 12§ <K S, ,(r) £ 9nr) (mod Q).

(© Sot A to By(r) mod .

Stop 3 Compute vy = perm(Ar), where vy i the orly entey of Ay
Step 4 Exccute the following fo = 1, .. n— 1.

(9) Let g3, .0 be the candidate generated for perm(B(X)) in
Step 20, Find the uniaue b, 1 < k < £, such tht () mod @ =

(6) Compute i, 88 (S0, 900)) mod @

Step 5 Output vy 4 perm(d) mod Q.

iative

Note hat for every i1 § S m— 1, in St 2(s), ech enty of B(X) in
a0 clement of Zo[X] o degree at mast i, 30 perm(B,(X)) is 8 polynomial
in Z[X] and ha degree o mast £ < . Note lso tht for evry i, 1 <
£ 0= 1 i holds that pem(Acs) = gy perm(Bi(0) (mod Q)
I Step 2(5) above,since perm((X)) s o peynomial of degre st most
., by Lemma 632, fo each i ), 1 < 5 <k < i there ace at most.
1 many alues f i 0, @ 1) such that ,(r) = 9n(1) (mod Q).
Since there are (3 < & combinations of 5 and £,

lrlrefo,....@-1}a
@HST<ESEAG () =an(r) (mod QU <
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PG +log ).

This s essthan 5¥(n) fo p(n) > 2. Also, by past 6 of Propositon 6.3, o esch
polynomial /(3) sppearing during the protocel, the log of each conficient of
1 at most

P)E) + 2logp(r)

“This s Less than p(n)fo p(n) 2 2. Thus,al the integrs that sppesr during
the execution of the protocol are at most p*(n) bits long. Modify V' so that it
will spend at most.7(n) staps or reading » numbr supplied by the prover.
Then V' wil be polynonial ime bounded and.sble suecesstuly to execute
the protocol for very input € L while interacting with P. Tis concludes
the proof of Theorem 6.4

6.2 Enumerators for the Permanent

PH C P#7 (by Theorem 412) and perm i complote for #P (by part 4 of
Propositon 6.3), 0 we may ot hope ta be able to comput the permanent
functon in polynomial time unless PH = . Then we ak: I there an easy
way to gensrate, gven an integer matex A, » short it of candidates for
perm(4) 3 that ane of the candidates i the correct vlue of perm(A)? We
‘combine the polynomial interpaltion technique and the self-reducibilty of
the permanent (1., the permanen of sn n X n matrx with n > 2 can be
cedued to the problem of computing the permanent of allts minors), we
show that we canot hope to have such an enumeration algoithm ather,
unless P = PP.
We s formalize the concep of candidate goneration.

Defintion 6.6 Let 5 = N be a function. A function E is an enumera-
forfor £ iffor everyz € 5° ther existsome m > | and somea, o € N
such that

1 B(@) = (myan, .. am) and
2 )€ fan, - sam)

Theorem 6.7 If there is o polynomialtime. computable enumerator for
perem, then perm € FP.

Proof Suppose that there is  polynomial-time enumerator E for the per-
manent function. Let n > 1. Let A = () be an n % n mateix whose per-
manent we want to compute. Let m be the smallst integer such that each
entry of A has absclue value at mast 2", Then, ], the sncoding length of
A, atLest -+ m. By pat 4 f Proposition 63, [perm()| < 205",
For all nm 2 1, (1 + m? > nim + logn). So, [perm(A)| < AP Let

l0g 4[] + 1. Then 2° > 2jperm(A)| We reduce the problem of com-
puting perm(4) to the problem of computing perm(4) mod Q for some +
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i 620 Letd 2. Let A be o Vandermonde matri of dimension
4 e, forsomé ay, .- ou, A is of the form

Voyafaf!
o e

Laga e af
Then the determinant of A i Tly<icszales o).

By Proposition 620, the determinant of A i [Tye,c, (- %) Since
20,154 3 pairwise disinc and Zg is a fld, the determinant of A i
nouzero, 20 A is nonsingula. Thus, A~ exist, and 0 we canset € = A~
Fot ll 6 Z U, - Yty Btias, - 11p) = ¢0). Thus, for all 6 € Zg,
o(6) = H0) + 1), Tn parcuia, o) = H(0)+ €. By our assumption,
9(0) = Vion, .-, up). The ight hand s is  of the protoce. Since the
protocal aceepts if and only £ & = K(0) + €1)u,(mod Q). the probabity
that the st succeds i 1.

By following a similar srgument, we can show tht the protocol accepts
whon the et i called for 4,11 %77, =, d = 6p+2m-+i 1, = Hors,
and V=,

Henoe, the probabiy that M accepta = isone. This provesthe complete-
ness ofthe protocol.
6.4.2.6 Soundness of the Protocol. Next we show that the protocol
sound. Suppose that 2 ¢ L. A sampling error occurs in a single run of t
sampling alorithm with probabilty less than 2-7. Since the tokal number of
Samplesgeneratd in the etire protoclis O((p-+ m-+5")"), the probabiity
hat  samplin error occurs during th execution of the ntire protocol is

otz

This i les than § for all 2 suficiently large. That i, the probabilt that M
accepta = duo to  sampling error i les than §. We will show that for every
oracle the probability that M accopts =, provided that no sampling error
ccur, i e than §. Then fo every oracie the probabilty that M ccepts =
i e than § +§ = } as desized. For simpliity, i the following discusion,
assume that w0 sampling error occurs. Let §,Go, - 0y ¢ (Za)® — Za
Ha, ..y : (ZQ)”" — Zq be the orace functions. We analyze the tests
that M conducts.

64.2.6.1 The Low Degre Tet. To anslyze the Low-Dogree Test, we noed to
deine the concept of clasencss

Defnition 6.80 Let s > 1 be an integr. Let 19 : (Za)® — Za be furc.
tions. Let0.< ¢ < 1. Then { and g are said to b cclose o the proporton of
€ Zg such that () # o(x) s ot most
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than 3, we can asume that the i o sampling eror. We caim that with
probability one all the tests either succeed of force M to stop computation
Instaly by sccepting . Cleely, the Zero Polynomil Test succoeds with
probabillty one for both Gy and My The Low-Degree Test succeeds, too
(sgain, given that ther i o sampling erro), which follows from thelemma
below. We il give ts proaf in Sect. 643

Lemma 6.25 (The Low-Degree Polynomial Characterization
Lemma) Let d,s be postioe ntegers. Let F = Zp for some prime number
R For every function h+ F* — P, h i a poynomial o toal degree ot most
i ond only iffor all y, 2 € F*, i holds that

5 bty =0 (med R,

where for cvery’, 0 <4 < d 1, 7= (44 (1)

Lemma 6.28 asures that the Low-Degree Test succeeds with probablity
e for Go, .Gy o, .-, Hyr Both the G-Bauality Test and the Ho-fs
Equality Test pss with probabiliy one

Furthermore, we claim that the Slf Correcting Polynormia Equality Test
succeeds with probabilty one each time it is caled. To prove the claim,
Suppose that the tet is callod for 4, 1 € § < p, 3 = 5 d = 2p i1,
U Gooyy wnd V= G Lot v .. 3o, 24 € T I3, . 24 e mot

puirwisedistine, then M accepts, 5o suppose tha they aze pairvise disinct.
Lot

90) =

U, 0.8kt 9p) + U Bt L erss 90
and

HO) = Uy o Vien Vit - 1Y)
Since U i plymamial of toal dgge . mosk £ = 451, ¢ s
Polyaomia in# of g st ot & The e ek, bt e 504 €
2 Bt 10 = Ereyeae For a5, 0 % 3 % 1k by

(1 i3 - 3p) ond vy = U(wy). Let € = (en, . cq and
0= oy - g Lot A be the matrx specifed in the protoce, name
Loz 2
[P I
Taggdd,

“This type of mteix s called a Vandermonde Matriz. The ellowing proposi-
ion, which we stte without o proof, shows that the determinant of a Van-
dermonde matrx s » smple formua.
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)

3 ulen

ok

where forevery ,0.< i < ¢, v s a polynomial i €, ..., of total degres at-
most (4-4), and v s not the zeropolynomial. Thr, or aly = (1, . 1) €
P, yis aroot of  if and oaly if on of the fllowing conditions (1) and (1)
holds:

() (9, 2) I8 root of each f ..,

() For some 1,0 135} 1m0t 100t of s, and yy I rootof

By our induction hypothesis,the number ofy for which () holds
(@~ ON*"D)N = (d - N~ and the number of y for which (i) hods s
at ot (N*~)e. Thus, the total number o roos of s st mast dN*-1 sa
esired. Thisproves the lemma. Q Lemma 632

Now, the reason tht the polynomins o, .., a1 Ho - by a0
unique can be explained s follows: Lat  and o be two isinc polynomial of
otal degree . Suppose that both u and o ar p-los toa uncton £+ F* —
. where Fis a ed o sze N. Lt 0 = v, Sice 4 0, 4 0. ince u and
st prlos 11, s 2p-clos to . o, the proporton of y € F such that

s at least 1~ 2, By Lemma 6.3, the proportion of y € F* such

st most . This implis § = 1- 25, i, § + 20 2 1. We

laim tha thia nequlity holds fo none of 3,00, .o, -,y Since

V=12, th gt vl of d s Gyt 3, the g vl of

D1 b and ths, 4291 at ot 22252 1o Thi s s than

1 for a7 sufficiently large. Honce, 3.0, gy o1y ave uniquely
defned -

Now that each of G,Ga, . GpHo .. Hy is close 0 & polynomial,
we hink of th other tst as hecking the propeties (D) through (1) with
each of these polynomialreplcing s corresponding oacle fnction, .., (D)
hrough (1) are modifed 1 fllows:

(DY) Bqation 68 holds with go and § in plae of By and B, respectivly.

(/) For each i, 1 < i < p, equation 6.9 holds fr g, and g, in place of B,
and By, respectively:

(") For eac i, 1 < i < p", cquation 6.10 holds for Ay and hi-y in place of
€ and €y, respectively.

(@) o = Lulgs; K61, byrr)  (mod Q).

() 4,20 (mod Q).

(1) by 20 (mod Q).

Of course, the machine M doos not have dirct acces to any of the polyno-

mial g, .y, -y, bt each of them 8 close to the corresponding
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Then we have the following lemma.

Lemma 6.81 (The Low-Degree Polynomial Closeness Lemma) Let
4> 1 be integers. Let § = ybay. Let | be o function from (Z)* 0 Zg.
Suppose that f is not 2.close 1o any polymomiol o total degre at most d.
Then 1 surites the Low-Degree Test ith probabity lss than 1

The proof of Lemma 631 is long; we defr i proof 1o Sect. 641, For
o, st hat he lemma s corec
Lo d = pand § = gpbye. For ach i, 0 < < p, et dy = 2p 4

e Alo, for sach 4,0 < § € g, e 4
= rororameron. Then, by callng the Low Degio Tk, M chcks whether
the alowing conditions ae al satsfied:

« §is -ckose o a polynomial o total degree at most &

@ Forall 4,0 < 4 € p, G, is b-close to 8 palynomial of total degree t most
d

o For ll 4,01 6 <, My i Bcloss to » polynomial of total degres at most
d

Then, by Lemma 6:31, if ome of thee condition s no satsfied, M on input

 reect with probabity more than §. So n the following discussion, et us

astame tha these conditons are all saisfid, .,

() G s to 8 polynomil § oftotal deres st most d
for each i, 0 < i < p, there is a polynomial g, of total degree at most d;
tht i s o G and
foreach 1,0 § £ g, there s polynomial o ot dogres st most
tht i s o M

The polynomials go, . .o . by e uniquely determined, due to the
following lemma.

Lemma 0.52 Let d,s > 1 b itegers. Lt F e a finite feld and ket N
IIFI. et F* = F b a nonaers polnomiol o totol deyree ot mst . Then
e proportion of y € B fo which (1)~ 0 i t most §

Proof of Lemma 6.32 Let d,5,F,N, and u be s n the hypothesis. Lot
T be the roos o win P e, T = {y € F* | uly) = 0). To prove the lerma,
it suffices to show that the cardinality of T is at most dN*"1, We prove
his by induction on s. For the base case, suppose that s ~ 1. Then u is &
univariate polynomial of dogroe ot most . has ot most d distinct roots, 35
IITI| < d = dN*~ a desied. Thus, the claim hlds for s = 1.

For the induction step, uppose tha  — o for some £ > 2 and that the
claim holds for ll vaues of s that areJess than s and greater than o qual
to1. For some ¢,0 < ¢ < 4, u can be writin as
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b roportion of = (.. 47) o A t ot e e g 0
Go returns a value different from that of go is at most 1 - (1 - &) < 34. So,
the proportion of y = (y, ... ,uy~) such that F(y) # Ho(y) (mod Q) is at
1§ 05 21 B2 ke g, T s

than J for ll  suffcenty large. Thus, we have the following reslt.

Fact 6.3 Assuming (%), i ho # fo(mi€y, . &) (mod Q), then the
Hofs Equality Testfol vith proabiy grester than 3.

64,269 The Effect of the Sef-Correcting Polynomial Euality Test. Now
we analyze the Self Correcting Polynoial Equality Test.

Fact 6.37 Assume (%) Suppose tha there i some i, 1 < § < p, such that
equation 6.9 does ot hold with g n place f B, and 0y i ploce of Bi1;

96w 6) £ 0, e O 6p)
gl e Lo, )6 (0d Q)

Then the probability that M reects = during the ezecution of the Self.
Cornecting Polynomial Equalty Tet with ¢ = p, d = s, U = Gys, and
V'= G, s grater than .

Proof of Fact 6.37  Assume (*). Suppose tha there is some §, 1 € < p,
such that

L L R X ]
+ 0ol b L &) (mod Q).

ofthe SelfCorrecting Polynomial

Let i be sch an 5. Consider th exceut
Equalty Tt with £ = p, 4 = d, U = Gy, a0V G, Supposs that
Ui oSy € Z have been B and 544 Y 10
b pidkd. Lot ¥ denst the (p — 11uple (o, - 1,30, 3p) and
forCach 0 Zo et Y{0 dencte (v . 1.6, - 3p). The protosl
et i and oty i the Following v condtions ok

o 20 .24 are pairwise disinet, and
O+ # Vi, ) (mod @),

where ¢ s the polyuomial whose cocicents swe given by
AU ), .. UV ()T and A i the (44 1) x 4+ 1) Vander.
monde. matrix such that for all intgers 5 and k, 0 < 5 < d, the
(7 1K+ 1)ch atry of A i . Since .1 is a polynomial of total degroe
at 105 4, if 0, 24 e parwise lstinet and, for all 0 < j < d,
UYL = o r((YIa]) (mod Q), then for all 0 € Zq €0) = ou-1(¥16)
(mod @), So. M rejeca zif
) ... see pairwise disinee an for every 5,0 < 5 < &, U(Y]3) =
aeaVI5) (mod @),
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crale unction, 0 with high probailty a randomly selected poit In the
Gomain it ane ot which he orcle fonction and the polynomial agre.

64,262 The Zero Plymomial Tst and Equaiy Tests, We nxt analyze the
Zaro polynomial Test and the Eaquality Tesa. We analyze the effct of the
Zata Polynomial Tt frs. Suppose tht the tet s caled wih 5 = p and
U= G,. Suppose that gy i no the set-polynomial. Since g is » polynomial
of total degre dp, by Lemma 6.2, the proportion af y = (31, . 1) such
Wt 35(5) 7.0 (mod @) i at et 1 — . On the other hand, snce G is.
ylose (0 g, the proporton of y = (s, . 3p) sch that ,(5) # Gy ()
(mod Q) f a0 most &, Thus, the proporion of ) sch that
) %0 (mod @) f st least 1 - § —b, = 1~ & — ;i
reter than § for sl 2 sufficently lae. Thus, we have the Fllwiog foc.

Fact 633 Assuming (%), i g i rat ser, then g suries the Zero Poly
nomial Tes with proliy ess than §

By following  simila discusion we can prove the fllowing fact

Fact 6.34 Assuming (%), f by is not sero, then
Polynomial Test with probabilt less than .

The G-Equality Test can be analyzed similacly. Suppos that 3(5)(1 —
5(0) 7 u(s)(mod Q) Since s  polynomial of total degre 3t most
' 2p, the proportion of = (1, .3) € (ZQ)” such that 53)(1 —
5000 2 50 (mod @) i, by Lemma 6.3, lesst 1 5. Sinc 5

o §, the proportion of y = (31, - ,¥y) € (Z)? such that S(y)(1
1= (mod Q)

survives the Zero

Gw) #
o d-cote oG the proporton
13 506k that Go(s) # () (md @) i o most . So,the

1) such that Gt~ G(9) # o) (mod Q)
0= 1~ 3~ gybay ~ b This s gresterthan
§ for all 2 suffcendy arge.

Ths, we hve the following reslt

Fact 6.35 Assuning (%), §70)(1~36)) # 4(3) (mod Q), then the G-
Bty Tes ol ith prbabiy ratr than §

“The snalysis of o/ Baquality Tost s smila. Lok 7 = £(Goi s, &)
and ' = (@i, . &) Suppose that 7' # hy_(mod Q). Since o i
« polynomial of oial dgree at most di, by Lemma 6,92, the proportion
o3 = (41 .. ) sich that F/s) # haly) (mod Q) s at lsst 1 — %,
Since o is B cose 0 o, the proportion of y = (31, 1yr) such tha
Hols) # hols)_(mod Q) Flony o i)
he i, second, and i siven to G, since g i
diectly accesbie. Since ntersect with each other,
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By hypotbesit, 0ca(6, - 61 0 6) + a6 i L
Gnr - &6 # 0. 16) (mod Q). Sine g is polymomial o to"
tal degon d, = 2p-+i, by Lemmua .32, the average of IS o at most 228
Since V is diclose t0 g, the average of SSHEL i at most gzt Sinco

U i Gt 0 gy, the average of UL is st most gizhire. So, the
probabiity that M rejects s at lesst

| @
femarr i R

and this o groste than § for al 2 suiciedy age. Tis provesthe propo-

tion. QB 637

By a similar analyss we can show that the following fat holds.

Fact 6.38  Suppose that there is some i, 1 § < p, such that eqation 6.10
does not hold with hy n place ofC, and b n place of C,

[N S Py SRR S YA 5}
+hies(E e Eien L 606 (mod Q)

Then the probaity that M eicts = during the exccuon of the Se-
Corpcting Polynomial Equaly Tot with s =/, d = iy, U = Ho
and = H e reterthan

64,264 Puting the Picces Together. Now wo put all the pieces togother.
Assume that there i no sampling error and that. (*) holds, . each o the
oracl functions is closo 10 a polynomial o dsired dogreo with a desred
distance. Also, sssume that the conditons (D') through (1) are 4l satis
. Then, § i a polynomial of total degree at most p such that, for all
(61 16) € (0,117 66y, - &) mod @ € {0,1), and such that, for all
(6 16) € 0,17, L@ . 16) =0 (mod Q). Thia implies that
€ I, & conteadicton. So, sithr (*) does not hold or at least one of (DY)
through (1) fails to hold, and hence, M rejocts = with probabiliy a last 3
This proves the soundnes of the protocal

Now theonly remaining task s to prove the Low-Dogree Polynorail Char-
acterzation Lemma (Lemma 6.28) and the Low-Degree Polynornial Closeness
Lerama (Lemma 6.91).

.4.3 Proof of the Low-Degrea Polyno
Lemma (Lemma 6.28)

fal Characterization

‘This lerma statesthe ollowing: Let d and s b positve integers and R be a
prime nurber. Let hbe a mapping from (24"  Zs. Then h s  polynomial
of total dogres at most  if and only
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() 961 (V10 + 9 (Y1) # it - 1) (mod @), and.
) VIVl = 9V lu) (mod Q)

‘We etimate the probabilty that al thess conditons hold. Lot S,[Y] be the
et of all 6 € Zg such that Gooy(Y[9]) = g1 (Y16) (mod @) and S;[¥] =
Zq - S,[¥]. To estimate the probablty that (1) holds, frst suppose that
1Y) has at least d + 1 cements. Then the probability that ) helds i

SISV

sy

)

This e at least

(s ygu-d)‘“

- (G—HSH! H-d)“'
Q
IR e

- Q
Next suppose that 5[Y] has at most d elements. Then the probability that
(6) holds is 0. Since ||SY[Y )| + ISiY)|| = Q, 1 — L0 < 0. S0,

ogardlesofthe cardinaliy of [V, the probability that () holds i st et
el
e

On th Sthe hand, o ctimate the probabilty tht both i) and (i)
ok ot S, b th st ofall € Zg uch tht 1 +(V10) + oY 1 #
03 (000 @) and et Y] = Zg ~ S¥], Ak, ot SlY] e
e st of 4l 0 € Z, such that V(¥lg)) = (Yl (mod @) and ot
VT~ Zg — $\¥) Then th probablity ha ot (i) and. (1) hld 3

Now the probability that (i), (i), and (i) all hold s
(1- Chusmn+a) IO S)
Q Q
This it at ot

ISal¥] 0 SVl LIS
Q

Q

Since SY] (1 SiY) = Zq = (SV]U s,rvl»- 18:Y) 0 SY11
ISHIVII= 1SHVII- S, th probabiiy fhat (), (), and () hld is

LSSV IS _ g IS (@04
Q Q Q

-~ ST

snd the probabilty that M rejcts i the average of tis amount whete ¥
is chosen uniforaly a¢ random.
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e P Y by si =0 (mod R,

osiin

where for avery 1,0 Sd+1, %
by simply combining two propositons.

Proposition 6.30  Let d and s be positive integers. Let R be o prime .
ber. Let h be @ mapping from (Zp)* to Zy. Then h is o multvarite poly-
nomial over Zp, of degree ot most d if and only i forall y,2 € (Zr)* the
Function Fy(§) = h(y + 1) is & polymomial in  of degre at mast d over Zi,

Proof of Proposition 630 Let d, 5, &, snd h be s in the hypothesis
of the propostion. We first. show that i » polynomialof dgree at most &
We st show that h is a polynomial. For each y = (1, -+, 3s) € (Za)", let
Q€€ be the polymomial

O I 6 om-a"

A

(-1’ The lemma can be proven

Then @, s an e-variste polynomial snd for every a = (o, .. ) € (ZR)",
Q@) =1 (mod R)ifa=yand Qy(a) =0 (mod R) otherwise. Define

M) = 30 Qs B 6o

Er

Then s n svariste plynomial and

Now what we need to shv s tht th degee of i at mast i and nly
8 il y and 5,5, € (Z4)%, K (1) i3 plymomia n  of dgres at most
. Suppose that A has total degre st mst . Then A can be expresad a6
e sum of monomisl, eachofthe frm € -1 €2 such tht ¢ € 2\ 0],
TZ01 € S gy ey e 2 hond e+ e < d Lt ¢ bo such
 monomial, Lty and = b abitaey lmentsof (2. Then, €y + 1) i 3
pelymomia i o dogoe 1+ -+ £ < 4. Thus, th deee of K, (1) I 2t
et . This proves th dirction rom lf o ight

T proe the the disection,supposethat o al = € (2", te function
#4,.(0) hy-+ 1) 8 olynomial n o degre t ot . Assome tht the
0l degree of s some & > d. Divide it vy, e s, where 4y consits
of ol the monomials af b having dgree xactly % and s consts of allthe
monomisls o h having degee s than £, Tkt be (0, . 0). Thn for
A1 € (Za)*, wn(8) = (53 and i) i  plynra .  hving degres
at most k1. By oue ssumption, o all € (Z4)% (i) s 3 polynomial
i of degre at most d Since £ > this implise that, for il + © (Zp)"
() = 0 (mod R), This, h = . (mod ), and thus, the g o A s
e thn &, o conteadicton. Honce h 8  poynomial hving defree . mest
" Thiscompletes the poof of the proposition. O Propestion 6.3

A (mod R). Thus, his a poly-
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te st variable et to True. A patial exception (o the use of this attack
i those sections i the lef st technique, which we use i Sect. 112 This
technique, while in some sense o voiled tree-pruning procedure ispired by a
Iomg lin of s reduciblty base tree-pruning procedures, adds a new twist
o thi type of argument, rather than being a direct invoeation of SAT
sexeducibilty.

Section 1.3 studics not whether there are sparse NP-complete sets, but
rather whether NP — P contains ony sparse sts a all. Like the previous
secions, this secton employs explict agorithmic consructions that. them:
selves e objects hypothesized (o exist. by the hypothese of the theorems
for which they e providing proofs. The actual rsult we arrive at i that
NP P contains sparse sets if and only if deterministic nd nondeterministic
exponential e differ.

“Throughout ths book, we will leave the type of quantifed varables im-
plicit when it is clear fom context what that type s For exampl, in squa-
ton L1, the *(vn)" s implicitly “(n € (0,1,2,...)." and “(42)" is typi.
cally a shorthand for “(Vz € 5)." Wo will use  colon to denote a constraint
on a variable, .., “(V: R(z))[S(2)] means "2 [R(z) —> S(2)]" and
“(3: () [5G mesns *(36) [2(z) A S(2).” For any set A and any nat-
ural number , w will use A" to denote the Srings of A that ae of ength
st most n, and we will use A™" to denote th sringsof A that are of ength
exactly . Given a Turing machine M, we will uso L(M) to denote the lan-
usge scceptad by the machine (vith respect to whatever the scceptance
mechasiom of the machine s

1.1 GEM: There Are No Sparse NP-Complete Sets
Unless P=NP

111 Setting the Stage: The Pruning Technique

Before we tum to Mahaney's Theorem—NP hassparse complate ses only if
P = NP—and ts generalization to boundec-truth.table reductions, we first
prove two weaker results that display the slfreducbility.based tre-proning
Spproach in & simpler seting. (Below, n & small abuse o notaion we are
taking “1" incertain places—such a in expresions ke “1""—as  shorthand
for the regular expresson representing the st {1})

Definiton 1.1 4 set T is a ally se ezacly T C 1.
Thoorem 1.2 If ther i a tally et that is <1, -hard for NP, then P = NP.
Corollary 1.3 If there is a tally s tht is NP-compete, then P = NP

Wo note n passing that if P = NP, the the singleton set. {1} s trivially
both NP-complete and coNP-complets. Thus, all the L. ther..” theorems
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6.4.2.1 Encoding Membership Questions. I the irst. phase we convert
the membership questions i L tologcal expressons. By the tableau method,
there i . polynomial  such that, or very 2 € £, ther i » JCNF formula
e of 207 varisbles such that 2 € L I and only if . s satisiable. For
Variable X, we write X = 1 to denote the lteral X a0d = 0 to denote the
Iiteral X. Then, we can assume that each clause in ¢, i o the form

(X() = bV (X(ra)

BV (X(m) = o)

fo some my, mz, ma € {0, 27070 — 1} and some by by, b € {0,1). For
cach z € . et the binary sirings of length p(e]) encods the numbers in
{0,..~ 27 ~ 1}. Dofine the polynomial f by: p/(n) = 3p(n) + 3. Then,
for every 2 € I, the set of al /(e])bit binary stings y = munanabybabs
i isomorphic to the set of all cluses that potentially appeac in . Ther
are exponentially many clauses in . 50 10 polynomial-time algorithm can
compute the entire description of . However, & polynomial-time algorithm
can chock,given 7 € I and a potental clause y, whether y actally appears
in'p,. Define

B = (a#ylz €5 Ay e 0D Ay appeas n )

Then B € P. Furthermore, for overy = € 5°, = € L if and only if

(5) there s an assgnment A such that, for every potential clause y =
munansbibaby, Iy is sctually a clase n e, then A satisies .

By viewing A as 8 mapping from (0,1}74%) to (0,1), (5)can be rewritien
(@4 0,10 — (0.1y)
(¥ = b € 0,1)7040)
[eftye B =
Cm) =5V () = 5V () = )]
Noting that B € P, consder 2 nondeterministic plynomial ime-bouded
macin Ny tha,on it = € I, guesse cause , and he sceptaf and
only =y € B. Sincefor all ,/y./ € T, ] = || and Il = [, then
{241 = |2 4, by spplyng te abens method to Ny and by addin some
dummy vrible and some duny clauss, e abeata a poymonia te,
o cach 7 € £ » gonerc SCNF formia . with the folling properti
« Tueris a polynomial  depending only on L auchth . s <) ()
e
« There is @ polynomial m depending only on I soch tht G, has ()
clses oy

« For evry y € 0 x4y € B if and only fthee is o satieying assign-
e of Gy suchtha 5 e lngth /) prof o .

(62)
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o For every a, . € (0,17, 0< (A, . a) ST
o Fu(&iar, - Jay) =0 and oy if cquation 6.4 hods.

Then, forevery A: (0,17 = (0,1},

(v € 0.1 OD)ZAw) = 1)
it and ony 6

M, ape) € 01 fali s o ap) = 0] ()
To determine whether = & L we tet whether there exits a functon A
{0.1)7 = {0.1) for which equation 6.7 olds.

Lot F be'a fied. Suppose that A is btained rom some B F? — F by
restriting s domain o (0, 1)7. Then, € L if and oy fthere exiss some.
5 F7 —+F that satisfin the fllwing two conditons
o For every e, ...0p) € 0,11 Blor, . ) € 0.1).

o Forevey (a1, .. ) € (0.1)7, o(Bi . ) = 0
What i ' and what Kind of function 5 satify these conditons i the case

when 7 € L7 The following fact shows that a polynonial of total degzee at
most p s suffcient.

Fact 6.25 Let @ be an arbitrary rime mumber gnater than 3. Then's & L
 and only f thee exits 0 B+ 27y — Zq uch that

1. 8 is @ olymomial of total degree ot mostp,

2 Jor cvery (a1, - a5 € (0,117, By, .. 1a5) mod Q& (0,1, and

5. for every (o .. y2) € (0,1, 151 a1, 0y} = 0 (mod Q).

Proof of Fact 6.25 Suppose that there xists an oracle A that satisfios
equation 6.1, Defne a mulivaiate polynomial 8 by:

B Y e 1T L6
[ e
where £o(€) — € and 4,(6) “Then B is a multilinear polynomial in

£ by e plynomis]that i lines n each of the vasiabls £ 15
This mplie that 5 1 & polynomsal of total cegre at most . Thus, prop-
ety 1 holds. For all ¢ = (e ) and @ = (an, 1) € (0.1,
Tiecy oo i o o 1 and s equal to 0 otherwise. Then,
oy (or, ) € (0,11, Al 1 2p) = Blan, .. o). Since the
i o 4 e S st bl i i ot b
every (@, .. a) € (0,17, fo(Bian, . ape) € (0,1) and that for every
O ) L AT YR S ey AT SN
0" (mod &), Thus, property 3 holde
On the other hand, suppose that there i  polymomial & of ot degree
st most p tha satsics propetie 1, 2, and 3. Let 5 denote th function
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Then we can rewite cquation 6.2 a5
(@A (0,17 0,1))
(4 = numanabybaby € (0,11704D) (v € {0,1)007D) ©3)
aly2) = [(A(m1) = B)V (A(ma) = b V(Alm) = o))
“The conditon inside the outet brackets []of the formula, ..,
Claz) = [(Alm) = B)V (A(ns) = b) v (An)
s cquivaent to
~Ge(42) V (Am) = bV (Ama) = )V (Alma) = b,
and ths, s quivalent @0

G142V -+ Va9V
) = )V (Al =)V (A = ). 0

b))

Define 3/(n) = /(n) + a(n). Then equation 63 i euivalent to
@A 000 — (0,1)) (w € 0,1 ) [Z(Aw) =1, (65)
where
Z(A) = L)Y - V~Crup(u)V

(Am) = 0) ¥ (Ama) = ) ¥ (Alna) = b))
and 0 s of the form nymynshybabss such that [
bubaby € {0.1), and || = g(z).
6.4.2.2 Converting the Logical Expression to Arithmetic Expros-
sions. Tn the second phase we obtain an arithmetic expression of equa-
tion 6.5, For simplicity i the following discussion we fix a string = whose
membership n L we ar tstng, Lot m = m(z1). p = p(l1), snd "

"To construct ous arithmeti form, we fst replacs squstion 6.4 by

Inal = Ins| = p{lz),

LA ) = BBt ] ©6)
Here -
&) =€l
o) = oy
160 = el

and, for sach i, 1 <5 < m,
(€ = )+ (61 =02+ (s =)

where Cu(52) = (6, = (1= ) V (6, = (1 —cua)) ¥ (6, = (1= cua)).
Then, fo every A- {0,1)7 — {0,1), the Tollowing conditions hold:

104 i & polynomil o tota degres at most d, then /s i » polynomil of
total degree at most 64 + 2m.
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at most 2p-+ -1, then B s  polynormil of total dogree at most 2p-+i. S0,
past 1 holds.

We prove part 2 by induction on i Fo the basecase, the equality trivially
holds. For the induction step, auppose that ¢ = o fo some 1 < io < p and
that the claim holds for all values of tht ace greater than or equal t0.0 and
lessthan or equal 0 ig ~ 1. By the induction hypothesis,

and by defntion
Bl

Ba(fn - 606ty &)
FBalEn - o Lo 6
By combining the two equalites, we have

Bl &)

T B0
e dteton
LIRS | G CICHRER NS
et issEi
= X Bofenenbionnio) TT &

aeton s

Thus, part 2 holds
To prove part 3, note that

B= ¥ I &8 e

1o sl (6,16 € (0,17 it hlds that B ., 6)
then o all (1, ) € (0.1 Ber, -5
that B, %0 (mod Q).

W dene & family of polynomias Co - Gy et Co =

(mod Q).
(1m0 Q). This implies
E)

LB, ). Foreach i, 1 << 9, define
s
Coaen, O.6ists o) (6.10)
AC(o, L

The functions Cs .., Cy have the folowing properties.
Fact 6.27

1. 1B is a polymomia o totol deree at mstp, thn forevery', 0 < < ',
€. 15 @ polynomial of toal degree at most (6p-+2m) +1.
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constructed from B by resticting it domain to (0, 1) and by taking modulo
1Q ofthe vlue. By property 2, we can treat B as i s valuis wero resticted
0.0 and 1. Recall that fo every oracle A, and every (as, - o) € (0,117,

0 Lo . ) 3.

Since @ > 3™ for every (o1, ) € (0,17, (B, ap) = 0
it and only i (B ay, -+ 1050} = 0. (mod Q). This, equation 6.7 holds.
This implics that = ¢ L. 3 Fact 62

6.4.23 Developing the Probabilstic Oracle Protocol. Now we de-
velop a probabiltc oacle Turing machine M that tests the membership of
in I based on Fac 625

"We assume that the pare of the oracle providing information about the
membership of 2 n L has a binary encoding of an integer Q € 2,247,
‘which i supposecly a prime numbe, and a cartifcat of i primalitythat can
be verifid in polynomial ime. Thisassumption is valid. See the discussion
in the proof of Lemma 6.11 an page 131

We'lso assume that the partof the oracle corrspondin to 7 hasinor-
mation about the functon - 2y — Zo, which the oracle claims has the
propertes n the statement of Fac 625

"Wo define a amily of polynomials &, .. By, Define o ol &1,
Zq, By 2y~ Za by

Boltrs -+ 65) = BlEss - &)1 =B - &) ©8)
For each i, 1< <, define

B, &)

By 6o ) ©9)

Bl 6 e

The fncions B, ..., B Bav the flnin properios.
Pt 020
1. If B is a polynomial of total degree at most p, then, for every i, 0 < i < p,

B, isa polynomial of totl degee at most 2p-+i.
2 Forewryi,0< 1<,

LYCTRS PR TCI SN |
aneton =
S L forall €, ) € (0,1)7 itholds hatB(e, .. &) =0 (mod Q)

dhen, foral (6,6 € 25, B, =0 (mod Q).

Proof 1t B is s polynomia of total degzes p, then By i a palynomial of
total degree 2p For evry §,1 € § € p By i polynomial of totaldegree
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@ To test (F), for each i, 1 < i < p", M executes the Self-Correcting
ol momia Equiy ok 01 6345146 B
ey
< oL "M ot the Mo Bty Test i i 10,
£ T (0, e the ot Paymnia st i P 6.1 with
il =gy
« o 0, Mt the Zero Potymomial Tot in i 611 wih
e i
164 he et e, M st =
Wo will o prow that M i that L € NEXP by provig that
M b ol G oo, ht e rtot s ot (o
2 0 el it bty ot than 5t ot ot s
Sound .1 £ L1 M Rl wi oy mrsthn 3.
6,424 Running-Time Anslysi of the Protocol. Sice @ < 24, e
Smping o, ot plorial i < Lo o04) 520 2
P il o ch Lo Do ot i ptaners s . S0+ 37
gl p e Th, e e f sl vt o ek (0 s i 20—
O(p), the total number of samples used to test (B) s

Y (spd+2p)

and the total mumbes of sumples used to test (C) is

o).

842 = 0((p 4 m+ )Y

For the G-Equality Test, the number o samples used s p. For single run of
the Self Cortecting Polynomial Equalty Test with pararmeters » and d the
umber of samples used is -+ 4+ 1. Then,the total number of sampls used

e
5 Graen-ou,

and the total mumber of ssmples used to test (F) i

) @ +d+1) = O((p+m+ 5",

eamsiSapiamiy

The numbers of samples used (o test (G), (H), and (1) are ", p, and /',
respecivel. Thus,the grand total of the mumber of samples used i O{(p+m+
7)) This is O(n) fo some fxed constant k > 1. Al the oher arithmetic
perations required in the protocol can be don i polynomial time. Thus,
M can be polynomial ime bounded.





index-158_1.png
144 6. The Plynonial Interpelaton Techniquo

2 Porevery i, 1S i<

LRI SR | LR )

-

S for all (6,1 &) € (0.1 it hotds that Cos, - ) = O
(mod Q), them, fo al (6, .- ) € 2, Gpr =0 (mod Q)

ProofSuppose that 51  polyomia of toal degre a mt . Then Cy
s plynomial o tota degrs t most 6+ 2m. For evry .1 1 37, and
vy d 3 1,1 s  polynomia of otal dere st most . then C, i3
Dolynomisl of ol degte at most -+1. Thus,pact 1 o

Parts 2 and 3 can be provn exacly o same woy 28 we proved the
comesponding pars of Fat 625 " a

We sssume that the orace has funtions G, .. Gp Mo, .. Ay
hich e oracecais and B, . By Co s respectivel, and that
e race s o convince M that bk G and o rs s funcions mo-
o Q. o et the caim b th racle,the machine M excutes  seuence f
prtocas. The follwing conitonsa eted by thesguence of rotocols

(A) G polynomial ofttal degree a most .
(B) For each £, 0< < p, G, i plymomial of tota degre at most 2p-+i.
(© For <3S 7, Mo is  polynomial of otal degree at most
G+ 2m i N N
(D) Eaquation 68 holds with Go an & in place of B and 8, respectivel.
(B) Foreach i, 1< 1 < . cquaton 6. holds with G, nd . inplace of B,
a0 By, respectively,
't 1§ < 3, cquaton 6.10 holds with s and ey in place
o €,y respectively,
Su(Gui a6, 6yrca) (mod Q).
(mod Q)
0 (med @)

The machine M execites the following to test theso conditons.

 To test (A), M exccutes the Low-Degreo Test n Fig. 67 with s = p,
dp andll

 To test (B), for each 1,0 < i < p, M exccutes the Low-Degree Test in
Fig 67 with s = p,d = 2 4§, and U =

 To'test (©), for each i, 0% § < 3/, M exccutes the Low-Dogroo Test in
Fig 67 with s = p, d = 6p-+ 2+ and U

 To test (D), M executes the G-Bquality Test in Fig. 635

© To st (E), for ench 1, 1 % i < p, M oxecutes the Solf-Correcting
Polynomial Equality Test in Fig 6.0 with s =, d = pii=1,U = Gi-s,
and V=g,
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Repent the ollowing 604 127 s
Stop 1 Select . € (Z0)" independently nd uifomly at random. o slect
i entry s th Sampling Algorihm i Fig 84 with M = @ and ¢ .
Stop 2 Forcach 1,0 <1 <.+ 1, cbtin rom theoraclethe value of Ly 1)
Step 3 Tt whether Sogocaun ardily + 1) = 0 (mod @), where fo evry
4> 0.and every §,0 € 20+ 1 0y = (-1 ()
1 thetst Tl thn imimeditaly et th input =

Fig. 0.7 Thelon-degree et

S 1L e vl sl o e

Step 2 Use th oracl to abisin ) v = G . )

EPE e e LT g < T
ity

Fig. 6.8 The Geoquaity st

Stop 1 Use e ssmpling slgorithm @ sty o, fom 7
Step 2 Tos whethe s, - 54 o pairwisn ditint 1 th et s then acept
Stop 3 Se 1o (o, .., u) and for ench 0 5 < dy st 0 with the
e by ol o e rde 2 e
0 < 0w = L)
siop nAmxn(dHJx(&H}mmu
1a
[ |
a
IR R

s some polyner

u ime algorithm (.., Gaussan limination) to compute
Step’s Compute e, cu by

(J--C)

and st (6) 0 th polymomil o + 0+ - + "
Step 6 Compate v 4 10) mod & and oy 8 (1) od Q. Tet whether 1o +
o =3 (mod Q). 11 th s fl ten rjct  impmacatly

Fig. 6.9 The efcorrecting polynomial quality st
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A st 5 i sparse it contains a mst poynomially many clements at each
length, e,

(3 polynomial p)(¥ )z = € 8 Ale] = )| < P 1)

“Thischaptar sudies one of the cldest questons n computational complexty
theory: Can sparse sts be NP-completa”

A e noted i the Prefce,the proofs of mostresults n complexiy thecry
ey o algorithns, and the proofs in this hapter crtainly support tht clxim.
In Sect. 11, wel il se a soquence of increasingy elaborate determiistic
tro-pruning and nterval-pruniag procdures o show that spase sets cannot
be <3, complet, o even <7 -hard, for NP unlss P = NP. (Tho appendicos
contain defnitons o and introduction to the reduction types, such a8 <5,

“and the compleity casses,such s P and NP, that are wsed in this

Setion 12 sudieswhether NP can have <J-complte or <-hard spacse
st PPOE) denotes the clas of languages that can be ccepted by
Some deerministic paynonial-tme Turing rmachine lloved st st O(lgn)
e to some NP oral. In Sct. 1, wo illvia binary sarch, sl
ity lgoriths, and nondeterministc lgorichms—prov that sparse
stscanno b <-complet for NP s th poynomial beraechy cllapses
o PO, und tha spare et canno be <-had for NP unlss the
poynomial beraechy collpees to NP

"As o ofen the cae in compleiy-theottic proofs, we wil ypically e
in the consrucion of our st ch hypokhet ofth chore tha the
algorithm s etablshing (o5, we will buld P algorithm for SAT, and wil
1 inthe algorithmtherally bypothtialspaso <7, comple s for
NP).In fac, this thorems vi algorthms tnder hyposheses” approach is
emplosed n each scio ofthis chapte.

Furthermore,mot of Scts. 1.1 and 1.2 e wnifie by the sprtofteir
agorithmic atack, which i to cxplot he (dsjunctv) elfreducblty” of
SATbusially the fact that. » boclean formu b saisble i s0d cnly if
cither it saishabl with s s variable st o Fls or i i saisabe with

T this ook, “we” usully rfes o the authors and the rders s we
ogeher n ur exploraion f complexy thecey

el
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Step 1 Using he samplng slgorthm seect 1,

s 3_ Lo e ol v i ) = G, )
oy g ) =Gl )

tep 3 Evtune 112 (v, 3 ol G wher s the polynomial
“appearing in the deinion of /.

Step & “Test wheher o = (11~ oy 1) (42 =1ap2)" (33 sop03) ' (md Q).
i he test s then ejct = mmedinity

Flg. 610 The Mo, cqualy st

Stop 1 Use the sampling slorth o sl 3 € ()"
Step 2 Obiain from the oraci = (3). 11 # 0. (mod @) et = immedi-
ety

Fig. 6,11 The seo paynomial tet

6.4.2.5 Complotenes of the Protocol. Next w show tht th prso-
cl i complne. Suppee cht 2 € L. Toan ther st o palyril
5 of ol dugte s ot 5tk st all th contons i Fct 635
Take the orale fnctons 6,60, .o, Hy. et are oqul to
BBy . B, Cy .y, tepativaly. Then, by Far 636 a8 637, the
arcl aneans sy he oo condilons

* Bofer, &) = Baler, - 6)(1 - Bo(e
< Rorevry 1< 1<

Oler - &)
L X )
B

o For vy §,0.< 4 p, G i polynomial of toal degree st most 2p-+i.
o Forall (€,",6) € 25, Gpl6r, - ) =0 (mod Q)
o Forevery i, 115,

M )

Hen, o 2o 06ian )

).

A e e, )
o Holar, ) = LB )
o For overy 1,0 < 1 £ 8", M, is  polynomin of total degree at most 6+

6m i .
o For all (6, 6) €2 Hprl6r, - ) =0 (mod Q)

Since the protocal is designed to sccept on encouniring
and wo o to prove here that the probabilty that M
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Bounded-width branching programs ofler Itereting connections between
compleey classes and algobeac structures. Lk > 2 and n > 1 bo ntogers.
‘X vk branching programm ove n-bit inputs prescribes manipulaion of &
pebble placed on a track of K squares. Frst the pebble is placed on square
1 Then s sequence of instructions i executed. Each instruction is simple:
I tell you o examine an input bit and then move the pebble to another
(possibly the same) squate, where to which square the pebible will be moved
depends on the examined bi, the current location of the pebble, and the step
of the computation. The program accepts the input if and only f the pebbie
s not on square 1 at the end.

How big is th class of things that are accepted by a family of bounded-
‘width branching programs of polynemially many instructons? In the case
wheo k= 2, ince there ace only two squares,the cass does ot seem large
enough to contain many ineresting langusges other than the paity function
(construting such  program s casy). Then how about & = 37 Again, 3 docs
ot scem big enough for u to handie complicated membership riteria. Then
How about 4,5, or 67 Note that for every k > 2 a width branching program
can be simuiated by a boundod-fanin circit whose depth is proportional
o the logaithm of the program sze .. the nuber of instructions. So we
ask whether bounded-width branching programs can simulste every ireuit
in nonuniform-NC'

Pause to Ponder 7.1 Con polymomialsize, bounded-width banching pro-
srame simate nonunfornNC 7

Indood, polymomiaksze, bovnded-width branching programs cansimlate
nonuniform-NCI? Interetingly, to simulate nonuniform-NC' the width of
polynomialsize branching programs can be as smal as 5. However, it is
belived that the width cannot be smalle than that. A siguificant diffrenco
seems to exist betwoen the computational power of width-d programs and
that of width5 prograims, Much to our surprise,the crucal difieenco s n
the act that the permutation group ovr (1, -, K} Is nonsobvable for k > 5
whil it i solvable for & = 1,2,3,4. Rocall that & group is sovable i

derived seris, Go, Gy, convergen o the trivial group, where G — G and
fo every i 1, G, Is the commutator subgroup of G, 1. Gy s the group
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Langusge with probabiiy one given  correct proof. An altetnative model is
the one in which the verifier is allowed to make an error Lo both members
and nonmembers, but the error probabilty s bounded by o constant that
i strictly less than 3. When the amount of randomes i fixed to O(og )
an important queston i how many bits of information have to b examined
o achive the desired error probabiiis. For th one-sdec-erzor PCPrmodel,
the curren best known reult i due to Guruswan t l. (GLSTO8]: For every
constan ¢, every language in NP has a one-sded-error PCP protoca that
\ses Oflog n) sandom bits, examines ony three bits, and, fo each nommen-
ber, mabies an errr ith probabilty at most § +¢. For the two-sided-rror
PCP model, Samoroditsky and Trevisan (ST00] show the flloving strong
el For ol constants ¢ > 0 and o al positve integers g, every angusge in
NP has  two-sided PCP protocol that s O{logn) random bic,cxamines
4 bits, accepts each member with probabiiy at esst 1 — ¢ given a correct
proof, and rejects each nonmembe with probabilty at least 1~ 2-+49(/0.
This is esentially the curret best bound. Histad and Wigderson (HWoI]
present . simpler analysis of the proof of Samoroditky and Trovisan, and
Show that the error probability in the soundaess condition can be slightly
improved.

The PCP Theorem also improves upon the nonappreximabilty result
i [PGL+6) as follows: For every constant ¢ > 0, it is NP-hard to approx.
imate the sizo of the largest lique in a geaph in polynomial time within +
Sactor of . The proof of the PCP Theotem s very complex and long, and
thus, is boyond the coverage af the bock. The reader may tackle the paper
by Atora et al. ALM*98] or o complete presenation. The PCP Theorem
s a culmnation of the reseazch on interactive proof systems, and it opened
up & new reseatch subaren: NP-hardnes of approximation based upan PCP
characterizations of NP. Ther is o vast Lterature in this subarea. We refer
the render to two surveys, one by Arora and Lund [ALT], which discusses
the basic reslts in th subares, and the ather by Bellare (Bel6), which dis-
cusses further development. Crescenz and Kann ((CK], so also (ACG*90])
maintain & web it containing o compendium of NP optimization problems.
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2EL e Pl £1

Let pbe  polynomial bounding the size of P, L., or all n > 1, |Po] < p(n).
Wel eplace P by a fanily of width-k, polynemialize branching programs,
P'= (Po)aer, such that P decides L and, for al n > 1, P4 is 8 power of
2 and is'at most 2p(n). Let n > Land ot m = [, Im {3  powes of 2,
then Py = Py. 16 is not & power of 3, we construct Py a follows: Let ¢ be
the smalet nteger such that 2> m. Then 2 < 2m < 2p(n). Let 7%, b the
program ofsize 2 such that fo all 3, 1< § < m, the th fnstruction of Py,
s cqual to tha of Pa and, for all . m + 1< J < 2, the jth instruction of
Py (1, I, ). Then, for ol = € 57, Pif] = Pafel. So, P2 has the desived
propetie

Tetn> 1 be fixed. Let P = ({5,481 Lot  be such that 2 = m.
For all & 5 and for al intogers 7 and & such that 1 < < 5 < m, dofine
()] define nductively as folows:

@ 167 = s, then x(r, )] = 4y

167 > s, then w(r,8)fe] = i 0 x(r, = el

Cleasly, for all € 5, Pyfe] = {1, m)i.
Since the monold aperation o is ssoclatve, for evry € 57, the expres.
sion {1, m)lz] can be evaluate by a simple divide-and-conquer mathod:

+ Lot rand s be ntegers such that 1 < < s < m. To ovaluse (7, 5[z,
evaliate @ = =(r, (7 + /2]l and 5 = a(1(r + /2] + 1)) ndivid:
aly, and then et 7(, )] o 00

Since mia 2 power of 2, the divide-and-conquer evaluation method can be

viewed a8 3 full binary tree having height {, where for all , 0 < d < , and

315 2% the tak at the jth node from rght at dept d i o evaluate

(03 = 124"+ 1,724, Callthiatre Ty,

"Wo construc 3 bounded-fan-i cicut Cn for L by transorming the
e T, ] intoa circt. T accomplsh this,we need o ixa binary encoding
ofthe mappings in My Let £ = [lg(F]. Since [M]| = K, 2 > M|
We encode each lement of My a3 8 2bi ting 8 fllows: Let g1, . dus
be an enumeration of the members of M. Then for ach £, 1 < £ < A%, the
encoding of g, denoted by (0, the 26bit eing y such tht the fist halt
ofy s ank i 5 and th second half of y i the bitwise omplement of the
B halfaty. LW = {y € 539 € Muly = ()} L@ WxW — W
e the functon defined for al 2 € W by

Qu2) = ele™ ) o7 ()

In other words, the function @ takes two strings fn W and computes the
encoding of the product of the mappings encoded by the two strngs. Also,
et R W % be the function defined or all y € W by
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seneraed by the clements (310K o o by b € Gi). Hore w cll
BT oheYohyohy thecommlatorof b and . Usin oraabvabily of the
permattion group avr {1 - 15}, oné can deign & il of plynemial
Sty it branchin progeas o cachIanguge n nonuform-NC!

i this chates we sty th powe of polynomialie, bounded.vidth
braneing prorams and how such s razslate o o complexty
. Fof o formal eiition o th claescht re dscrmsd . thia chater
o Soct ALS

7.1 GEM: Width-5 Branching Programs Capture
Nonuniform-NC*

7.11 Equivalence Between Width-5 Branching Programs and
Net

As we have just mentioned, polynomiaksize, width5 branching programs
capture nonuniformNC'. In fact, the two computational models are equl.

Theorem 7.2 5-PBP = nonuniform-NC'

We need to define some notions and notation. Recall that & moncid is a
it set. S of abjects with an asociated binaey operation o and an idenity
clement. Let > 2 be an integer. By M we denote the moneid consisting of
Sl mappings of {1, ...k} o sl an by , we denote the dentity mapping
in My The binary operation ois defined a fllows: For all o, 8 € My, 03
is the mapping 7 € Ms such that for all 1, 1 £ < b, 1(9) = a(3(0). The
aperation o is asociative, Le, fo all 0 8, ¥ € Mi,

ac(gon)

By Sy we denote the permtation group over (1 .. K}, Le, the se of all
biections from {1 .. ) to tslf.

Letn> 1 and let P = (g4, p)} -y be a widthk branching program
for 3. Then, by P|, we denote it length, m. For each 2 ¢ £, Pi] denotes
the product

(@opon

Wm0 o

Now we prove Theorem 7.2
Proof of Thoorom 7.2 W firs prove 5-PBP € nonuniform-NC'. The
Inclusion follows from a more generalstatemen:

Lemma 7.3 For all k> 2, k-PBP C nonuniform-NC'

Proof of Lemma 7.3 Let k > 2. Let L be a language in kPBP and
P = {Pu)azy be a family of widih-k, polymomialsize branching programs
that decides . For all n > 1, and for all z € B,
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‘which the bit of e(0)
takes

1 Let F, be a bounded-fain boolean crcuitthat
- € B, and computes

YA A

o €ty e sy,
- (312>

Lt 5, and s be inegers such that 1 < 51,55 < kX, Let Gy, be a bounded:
fanein boolean ircultthattakesa pais of 3 bts stringsy = b - g and 3 =
21 . 30 and outputs w = w .. wa, defined o follows: Lat 7 = %, - 1
be e(e (04, 09,,)). Then,for ench 7, 1< 7 < 26, Is given 25

B APy (2).

Then, for all .z € W,

Now, o onch 1. 7.2, et the rehoutps it of Hiy) o dfine by
V6,

whate G, (4,2) donotes the rth output bit of Gy, 2). Then, for al
vrew,

Hps) = ele™(2) 0™ 0)
The depth of H can be [log] +2 + [log ™). This s O(klogk). Thus, the
st clim of the fact holds.
“To prove the second claim, lt J = (s| 1 < « < k¢ Ag,(1) # 1). Ther
forally € W, R(y) =1 == (3 € Jly = 4. Defne

w0 =V EG)

Then, o ll € W, H'5) = R(). Th depth o A can b 0]+ log(h —

DR T (ko ), Thus b scend i of he e bl
e

This proves the s part.

Next we prove the other par, .., nenuniform-NC'  5.PBP. Let L be o
language in nonuniform:NCL Let.C = (Cy b1 be a family of bounded-fo
in, depth-O(logn), polymomiak-ize boolean crcuis that decides L. Lot > 0
be a constant such that for every n > 1 it holds that depth(C,) < clogn.
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Inother words, R takesa sringin W and tests whether the muapping encoded
by W mape 1t something other than 1. We will how in Fact 74 that Q and.
R can e computed by depth-Oklog k) bounde o it For o, et
s s the cortectnes of the fct an present how the ciruits or Q snd
R buit
Note that at th leat level o Tz, each component of the product P4

evalunted depending on a singe bit of 7. For each 3,1 <5 S m, thre's
dopth0 crcuit that computes (x( )z Let 5, 1< 5 < m, be fxed. Lot
10z = () and by by = (). For each 7, 1 <7 < £, the rih output
bit o e(n(i )] s

and the (€4 r)eh output it of e(x(, )] is

1ifa,=b =0,
o ita<b =1,
it = 0and b, =1,

= ifar = 1and b, =0,

Since b et computes by simply asgaing iput bits,the depi of the
it s

Note that st each nonlenlevelof T, divde-acconquer s applid. S,
forcachd,0 S d< -1 andr, 1 < 24, e put th circutfor omputing
@ st the e node from Fight at level d, here the st (rspectivel, the
second) 2 nput bits of the it are th 20 output bit o the et at
Uh (2~ 1)th ositin (espectivl,a the 2tk porition) from ight st vl
251

“The resuling it compute e ) Wefedth outputsof the ciruic.
o th ircuit o computing R. This s C. Then, fo ll € 7, C(2) = 1
ooy f (P = 1, ad thu, Cy(x) = 1 s nly i P11 # 1.
Cleal,the dpthofth it Cn  O((klog ), and this s Oiog ) ace
ki fied.

o t remain o show that depth-O(Klog k) it exits o Q and R

Fact 7.4 There s a depth-O(klog ), boundad-fain boolean circuitH that
compates @ in the following sense: For all 5 € 5%, i 4,2 € W, then
H(vz) = Qlv.2).

“Also, there i a depth-O(klog k), Boundec:fan-in boolan cireuit H' that
compates R i the Jollowing sense: For lly € 5%, i y € W, then H(s) =
R,

Proof of Fact 7.4 Let s be an iteger such that 1 < 5 < k. Note that
(g had exacly £ 1. Lot 1y, - b an enumeration of the  positions at
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() be the las instruction of . We replce tis instrucion by (5,05 o
). This is Ty, Then Ty has the desired properties. By Fact 75,
85008 =aund 6" o ol = I Since, P is an (1,3) program for 9,
Thisan (o) program for 5
Similaly, construct T, from P* using 0,
Jarly with 6 i place of B, ond T from P* similarly with 6 in
Then, T is  szed, (5, 6) program for , Ty i a size-k,
for g, and Ty s sizel, (s, 5-') program for h.
Defne P o be the program that xecutes Ty, then T, then T, and then
Ty, Then, for every z € {0,1)”, the following conditions hold:
thn PIf] 5t
6, then P/
and h(z) = 1, then P/|
) then P/(s] = o o o5 = I

So. P/ i a (1) program fo f and has size 2k +0) < dmax{h 1.

Next we consder the cas in which / is an OR gate. As n Case 1, we
coustruce P/ from four programs Ty ... T. T is constructed from P3 by
inserting 1" 06307 befor the irst. nstruction and 85 afer the st nsruc.
ion without incresing the program size, By Fact 75, 63" 0~ o = 5
Since, P2 i an (1) program for 9, T s a (307, program or . Thus,
Ty’ sisek, (99,) program for 3.

T, i consiructed fom P* by inserting 5" o0 befor th it nsiruction
and 5 after the Jst instrucion. By Fact 7.5, 03 0" 08 = . Since Ph

size, (1) program for b, T, is a iz, (0, ) program for .

For T, we e P and insert 7" 00, befor the st struction an 07
afte the last. By Fact 75,671 07" 00, = -1 Since P i  sie-, (1, )
program fo g, T isa sizeck, (5", ) program for g

For T3 we use P and fnert 'y 8y beore the frs intruction and
appending 65 afer the st By Fact 75, 83 0771 0 = ™1 Since Ph
st (1, 3) program or h T isasise, (a~', ) program for .

Now deine P/ o be the progeam that execute T, thn T, the T, and
then T, Then for every =  {0,1]",th fllowing conitons hold

gz , then PY{z] = a1 0~ 0ao (30 ) = k.
 109(2) = 0 and A(s) = 1, then PIls] = o 5" 0 o (807) =,
 105(z) = L and h(z) = 0, then P/lz| =™ 0 [yomoy

« 109(2) = h(z) = 1, then P/{e] = oo o ko = .

S0 P is an (1) progeam for £ and has size 2k +1) € Amax(k, 1)
Define P, = P*. Since depth(Co) < clogn, [Po] < 447CH) < i

Honce, L is recognised by  famly of polynomial-ize, width-5 branching

programs Q" Theorem 7.2
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For aach Stuple of integers a,bic,die such that {a,bcdie) =
{1,2,3,4,5), (@ b ¢ d ¢) denotes the permutation that maps a 0, b to
&40 d,d o ¢, and ¢ to 0. Defin the following permutations n S;:

@=(12345),8=(13542) andy=(132354)

Then i the commutator of o and 6, ., 7 = 4~/ 00~ ofoa. Furthermore,
deine

12534),0,=(14253),6,=(14325), ad 6y
By inspecton one can casly verify that the following fac holds.

15524)

Fact 1.5 600708 = o, 6 008 = 4, 65 0706 = o), and
royon 5T,

Lot n > 1 bo fxed. Lat  bo the output gate of C,. For each gate / i
C, e cach input z € (0,1)", Lt f(z) be th output of  on input 2. Then,
for all 7€ 27, Cu(2) = ().

Let Q be  branching program on (0,1}, It £ be a gate in C, and let 0
and € be mermbers of . We say that Q i  (0,€) program for / f for every
7€ {0.1)", QU] the mapping induced by Q on input %, satisfos

{orsm=o
i) =1

We will construct for each gate £ in Cy s (1,) progeam P Then, for
al'x € 7, Pl = I 8 6(e) = 0 and POle] =y if ulz) = 1. Note that
15(1) = Vand 1(1) = 3o, P fxes 1 and y moves 1103 S0, P¥ s a wideh5.
branching program for L". The constructon isinductive, procreding from
the inpat lowl toward tho output evl

Firs, Lt 1 be any input gate. Defne P/ as follows:

I £ e Iabeld by fo some , then P/ = {(5, I, 7).
o 161 i labeled by ; for some i, then P/ = {(,, )}

o 161 i labeled by 1, then P/ = {(1,7,)).

167 i labeled by 0, then P/ = {(1, 13 )}

Then clearly P/ is an (1, 2) program for /.

Next, let { be a gate at & noninput level Let g and h be the gates
providing inputsto /. Suppose that we have already obtained  sze-k, (5,7)
program P? fo gand asize-, Iz, ) program P for h. We consider o cases
£isan AND gate and / i an OR gate.

We frst. consider the case n which / s an AND gate. We construct o
program To from P such that T3] = [P and, for every z € {0,1}",

Tie] = 65" o PPlz] oo

“Thin b done a ollows: Let (i, ) be the frst fntruction of P7. W replace
Chi astraction by by (5,50 6o, ). Lot R be the resltng program. Let

aQ
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Proof of Lemma 7.7 Lt n, C, H, and ¢ bo asdefned i the hypothesis.

Let B — 4|[H]|. Let s be an scbitrary element in 8. 11 s = , then the

statement ofthe lemm trivialy holds since for evry gate g in C, {(1,¢,¢))
i (¢,¢) program for 9. So, asume that s # &

Note tha i the boclean cicuit model we us, th negation appesrs only.

at the Input level We show that fo very gate g in C there s an ()

progeam, P, for g having lengeh at most (41 H]1), where h i the height of

The prool i by induction on . For the base case, et h = 0. Lat g be o
st having height . We define the program for 9 o followe

« 10 g lbeled by 5 o some ,then P2 = {(46,)).
© 10 Ibeled by T for s . the P = (15,1}
S0 belod by 1, than P2 = (118,
© 10 i libeled by O, then P7 = {(116,).

Then P? s & desired (e, ) program fo 5

For the induction step,let.h = ho > 1 and suppose tha the claim holds
for all valiesof h that are lss than hy and grester than o equal 10 0. Lat
be a gte having heght A. et g, and g3 be inputs of g.Since the commutator
subgroup of H i H et every clement in H can be expressed asthe product
of commotators of H. The minimum number of commitators of H necessary
Lo express s it most [|H]l. To see why, suppose that there exists some
€ H such that the smallest number of commutators of H that are neoded
o express s is k> [H][ Lat £y -+t bo commutators of H such that

bt

For all 6,1 < 4 < k, the parial product &, -~ &, is « membe of H. Since
> 1], there exist  pair of indices (i, 1) such that 1 < § < < K and
Py . Then

Thia implics that a shorter expresion for s exists,  contradiction. Thus, the
Lengeh of expresson fo sach eement of H has length at most | Let s be
expressd

Bita o - B e e, (2]
where 1 < k < [ and s, - ax i, - O are commutators of H. The
gates 0 snc g3 are a¢ height <o — 1 Then by our induckion bypothesis,

for overy 1% 4  k ther exist the following programs P Qo R and S

« P, an ey ) program o g an s gt e than o cquel 0 51

© s an (c) profram o g and ha engh e tha or s o B
program o 1 ha et s thn o qual t B

510 an (51 program o 9 ad ha et e thr o el 0 B
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712 Programs over a Nonsolvable Group Capture NC*

We generaise the notion of branching programs. Let M be a fite monaid.
A program over M for S is  sequence of nstructons P = (15,53, )T,
cuch that for all §, 1< 5 < m, 14y < and 5] € M. For each sting
2, Ple] i defned a2

We say that P accepts = i Pla] # ¢, whero ¢ i the identty mapping of M.
For W C I, we say that P decides W' f for every = € S it holds that
ZEW <= P accepts x. Let P = {Pu}azs be a amly o programs over M
Such that, for every n > 1, Py is o program for 5. We say that P decides
> language L if for all n > P, dacides L. Fo  boolean functon { over
10,117, s s0,51 € M, wo say that a program P is a (so,8,) program for
£t for every 2 € (0,1} the product generated by the instructions on input
i s0 1 £(2) — 0 and 3, otherwise.

“To prove that nonuniformNCI C SPBP, we showed that for all & €
(@B, 87 3), for al itegers n > 1 and d 2 0, and for all depthd,
boundedfonn crcuits C with n inputs, there exists a length 4, (15,
program for C. By generalisng this we can show that,for every nonsolvsble
group G, there s an integer B > 0 such that, for al integers n > 1 and
430, for all depthd, bounded-funvin circuits C with n inputs, and or all
' €.G. both C and it negation have  size B, () program, where ¢ Is the
identity of .

Theorem 7.6 Let G e an arbitrary ransohable group. Let L be an.
bitrary language in nonuniform:NC. Then L is decided by  family of
polynornial-size programs over G.

ProofThe proof is almost the same as that of Theorem 7.2. Let G be
an arbiteary nonsolvsble group. Since G is nonsalvable there cxists some
nontrivil subgroup H of G such that G's derived serics Go, Gy, .. comerges
to H. Let C be a circuit and lot g be a gate in C. We define the height of
910 O o be the engeh of the longest dowmward path from g to any input
gate. Note that all input gates of C have heght 0 and the output gate of C
has height depth(C),

Lomma 7.7 Let n > 1. Let C be o boundedfancin circuit with . inputs.
Let H be an arbitary nonsolsabe group such that its commtator subgroup
(the group generated by the commatators of H) i identical to H. Let ¢ b
the identity element of H and let s be an arbitrory clement i H. For every
B0 < < depth(C), and for evey gate g in C having height b, g has an
(¢18) program.over H and an (sc) pogram over H., both having size at most
(A
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Proposition 6.40 Let d be  positive integr, et R > d+ 1 be a prime
number, and h be a mapping from Z to Zn. Then h s a polymomial of
degree ot most 4 f and only i fo every .= € 2,

S b +i =0 (mod B),
whereforevry§, 01 €441, 7= (421

Proof of Proposition .40 Let d, R, and h be as in the hypothess of
the proposition. Suppose that s . polynomial of dogree at most d. Snce
w0 polynomials of degree < d can agree on at most d points, specifing the
valua of b at d + 1 distinet poins will o a unique speification of . Let

au, . 432 e ditnet lements o R. Then, hcan be erpolatd from the
T .
e
5 ».(-a( i A(—a,))
R P )

(LI e W)

holds.Let g, be sbicary elements of 1 £ = 0, then gy WA +
) = h0) Eosicans e Notethat, for all uy Eos gy 30 = (104 S0,
Sugican 7= (0~ 11 =0. This, i .= 0, then Zoeycgry %y + )
055 (mod ) s desived. So, suppose that = £ 0 et & = y and for
cach 01 d-+ 1, It o, = y 417, Then,soce 2 7 0 and d 41 < R,
v 10431 re paiwisediines. So,we apply theabove formula. Fo evry
S

(6-0) = (et
set

(00— ) = (~1* G- D+ 1t
.
W 5 (M)

sl

Since for every §, 0§ < d+1,% (-1, we have

(mod )
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(

So. for all 1 2 0, 8 — St
Forcyam Otaos. The for a2 1,

SR N P

hon(n) (mod ). Let By = sh,0 =

o= 3 enll) (mod )

=

o

Since g1 is o polynommial of degree d —ky 1, the summation o the rght
hand sdo s a polymomial ofdegree d—Ko- Tosee why, et £ 0 b an nteger.
Let us suppose that the sum 3"y, 5 s a degroe-({-+1) polymomial of the
form o ein-+ - + ey i1 Sinco Ty 3¢ = 0, o. Tho condicion that
these coeicients have o saisy s
(eant e ety =
(e =1)+ - +eanaln = 1) 4t (mod B)

By rearranging terms, this condition is equivalnt to

= (1) e (0= (1= 1)) 4 =0 (mod R),

Note that for very m > 1, ™~ (n

)™ = Sogjgm-1 @msn. o, the above
condition can be witten 4 <

e 00 0\ fan) (1
oo 0 o | o
~achis —aces a0 [ fec o]0
oo oo e mae) \ @ o

where the arithmetc i over Zp. The (¢+ 1) x (¢ + )-matrx i lower tri-

‘Sngular and none of it disgonal entiesare zro, o it inverse exiss. Thus,

€1y ey can be uniquely determined in Zg. Thus, the sum of the r

hand side i a polynomial of dogreo d — k. Thus the claim holds for this £,

tao. Henee, the fact olds. Q Pt dl
Now note that s = an. Since s, is & polynomial of degreo d, h

olymonia o dogrn & i o b popostion. Q. Fopastion 640
“This proves Lemma 6.5,

6.4.4 Proof of the Low-Degree Polynomial Closencss Lemma
(Lemma 6.31)

This lemima stats the following: Let s and d bo positve integers and let §
be'a real mumber such that & < gz Let / be & mapping from (Za)" to
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a8 dsivd.
Ou the other hand, suppose that for all 5,2 € Za, it holds that
Socicass Wh(y +2) =0 (mod R). For each n > 0, let @, = h(n mod R).
et show that there is  degree-d polynomial () such that
(40> 0)an =q(n) (mod B}

For cach k, 1 < k< d, and each 20, let

Then we have the following fact.

Fact 6.1 For each b, 0 < k < d, there exiots @ polmonial  of degre
Ak suh tha,fo all 020,51 = an() (med )

Proofof Fact 641 _Th proo i by induction on K, going dov from = 4
o k=0 Forcach k 2 0 and cuch ,0.%5 < b, et iy = (-1 (3. For th
s cae, e = d. Weac aseumingthat o all .5 € 2, St ALY
20 (mod ). For sl 5,0 % 3 < d + 1, oy, = 75 S0, b that

0 (mod R). Replace by n and take 10 be 1.

R

3 awigoms

(mod B, @

Note that for all m > 1, (%) = (3) = 1 and for all 0 € i € m— 1,
() +(3) = ()

T4)- So, equation 6.1 can be rewritten as
(ﬂ: .,) E (ﬂ): a.,,(n.,,.,) o (man,

5 =)

By dofiniton, the fist term is 5, and. the second term s 51 So, we
heve 40— 34011 =0 (mod R). Let ga(n) be the constant polynomial sso,
Which S oqual € T 04,0y, Then, for ll 1 2 0, 34 = 4g(n) (mod 1)
Ths, che clam hods fo & = d.

For the induction step, o k = ko, 0 < ky < d and suppose that the
claim holds for allvalues of K greatr than ko and los than o cqual to . In
purticular, since the claim holds for k = ko 4 1, or all n > 0,

3 amensones Sau(n) (mod R),

whero g, s & polynomialof degres d—ky 1. As in the previous parageaph,
the sum can be rewr
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Cwrine X uClutistse) (mod B) ©12)

‘when y and = are chosen independently and unformiy t random fom (Zg)*
i cqual to the probabilty that

e Y et (mod B) (©13)
B

‘ehen w and v are chosenindependenlyand niforly at random fom (Ze)

Thi probabiiy i qual 1« by o assumption. By exchanging the e of

a5 o well as e e o and e havetht, o every 5. 1 €5 .41,

the probabily that

Cly+0)

S it ) (modB)

when = and aeechosen ndependently and wiforly a random rom ()"
61 c Lt Eye, ] be the evnt.
Y Y wCwiztiue 3 aCl+iz),

Eale, ] be the event

5 okttt T ey,
2N
w
Bl = e A B

Note that for all .2 € (Z)* the fllowing conditions hold:

o for ol iy 1 <4 € d + 1, cquation 6.12 hlds,then i £, holds.
o all 15 €+ 1, equation 613 hokds, then Ex(s ] holds

Since both  and J range from 1 0.+ 1,f £ and o sxe chosn indepandently
and uniformly at random from (Zz)", then Eolz, w] holds with probability
Aot 1 2(d 4 ).

Tet v, ..o be an enumeration of allthe members of Zp. P esch
£, 1< K< R lnt gy be the probabiity that s = Scscar, 1€ 4 12)
(mod Q) when = € (Za)* s chosen uniformy at randor: Assume, without
loss of generality, that py = max{pn, ... ). Then Eofz,u] occurs with
probablty ot most 3+ -~ + g3 < oy + -+ + pr) = pr. Since the
event Bo[,u] occurs wit probabiity at Jeas 1 2 4 1, e have py >
T304 1) This, the prooabity that ey (s + 45 o R taes
the most frequently occurring value, which 5 (4}, s at least 1 - 2(d-+ 1)

proes the . Q' Rt ot
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g that i not 26-lose to any polynomial oftotl degtee t most d. Then /
utvives the Low-Degree Test with probabilty es than .
"The emma follows rom Theorem 6.42 blow.

Theorem 6.42 Let d and s be positive intgers. Let R> d 42 be  prime
namber. LeC be o mapping fom (Z0)" 10 Zn. Let o = gy, Let be the
proabitty hat
i #O (mod B),
=

wherey and ar chosen independently and niformly f ondom fom (2
Suppos that < . Then i 2-loe o plyramialof ol degee ot most
Fover Zn.

Proof of Lemma 6.31 Lt R= Q. d = p,s = p, C = Bmod Zg, and
o = 5. Suppose that B mod R s 26-dose o no polynomial of tota degree
st most p. By taking the contraposiive of th statement of the theozem, we
have that <> ¢ Since the cquivalence i tested 6(p + 27 times,
the probabiliy that the Low-Degree Test succeeds i at most

1

This proves the lommo. Q Lemmas3t

Now let us turn to proving Theorem 6.42. Let d, 3, R, C, ¢, and ¢o by
a8 in the tatement of the lemma and suppose that ¢ < 4o For each y &
(Za)", define h(y) to be the mot frequently occurring value in the multiset
(Edveans 1C(0+42)) mod Rz € (Z)'), where tis see broken arbitarily

Fact 6.43 1f y is chosen uniformly at random from ()", then h(y) =
C(4) mod R with probaility at least 1 2s.

Proof Let W = {y € (Zg)* | h(y) = C(y) mod R}. Let p = [[W]|/R". Since
i can b bokan arbirarly to et he v of o very 3 € W,
for at least half of 2 € (Zg)" it holds that C(y) # ¥\ cqe) WO + i)
(mod R). Then ¢, the proportion of (y,2) € (Z)* x (Z)” such that C(y) #
reicans1Clo + 59 (mod B, i ot st 2. Thun p % 3. i prves
i 9 Rt

Fact 6.44 For all y € (Z)", § = s chosn wifomy at random fom
(Za) then theprbabity hat hs) = sy, 1Clo+12) (mod B) it
oo 1= 2(d 4 1

Proof Let y € (Zg)* be fxed: Lat i bo any integor between 1 and d-+ 1
Suppose that wo select 2 € (Zp)* uniformly at random and output u =
Y+ 42 mod R_Since R > d +2, o muliplicative inverse o in Zy exists, 50,
i unifrmly distributed aver (Zg)". So the probabilty that
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6.5 OPEN ISSUE: The Power of the Provers

What computational power must the provers possess to convin the verifer
of membership? Following » discusion similar t that of Sec. 6.2, one can
show that P*"-machines can serve as provers or P Aluo, the proof of
IP = PSPACE gives that PSPACE-provers are suffcent and nocessary for
'PSPACE,. Then how sbout NEXP? Sinco the oracl ha anly to x & satis
fing asigament and the argest satsfying asignment in the lexicographic
order of  formala with exponentially many variabls can be computed In ex-
ponenil time with an NP languase s the orace, the provors need oly the
computational power of EXP". Note that for EXP, an EXP prover suffces
(becsuse an EXP machine can be viewed 3 a spacial NEXP machine which
ses o nondeterminom). Can we lower the upper bound of EXPAFT

Open Question 6.47 _Con we show & stronger upper bound on the power
of the provers for NEXPY.
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et al. [LFKND2]. Definition .6, the notion of an enumersor (sso known
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Lomma 011, due (o Savith [SwT0). The tableay method b due to
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e to Sudan (50452 Lemma 632 is dve to DMl nd Lipton [DLTS],
Schwartz [Scha0], and Zippe (ipT). Propostion 629 can b found n many
inear algobrs textbooks (S Lang [LansT),for example). The interplation
formula tsed inthe proof of Propoeition 640 s called the Lagrange nterpo-
Jaton Formula and can be ound in suchalgsbra texthooks,such ss Van dex
Warden's [WAWTO] Chebyahev’s nequality (Lo 622 can e found i
probbilty textbooks (e (8] o cxnple).

"The den of rithmetzation st appesred In » paper by Besvr and
Figenbaum, [BEDO]. In some seas arthmetization i & very sophisicnted
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Fact 6.45 1f¢ < o, then for all . € (Za)",

)

=

Ay +i2) =0 (mod R)

Proof Let u,v € (Za)* be fxed. For svery §,0 < i < d + 1, and every
w € (Za)", the equation u-+iv = w(mod R) has precisly R solutions. So,
forevery 10 < 4 £ 44 1,4+ 0 mod R s subject o the uniform distibution
over (Zg)* when s and © are chosen independently and niformly at random
from (Zg)". So, by Fact 644, forevery ,0 < £ < + 1, the probabilty that

Ay + )

Y wClly+in) 3+ v) (mod R)

when u and v are chosen independently and uniformly t random rom (Z4)"
s a last 1~ 2(d + 1) So, the vent

X by +in)

5y S s s ot
s et ol 2642 whn s e chon sy
e e e )
oo B By e e e !
then y + ju mod R is uniformly distributed over (Zg)". Also, if v is chosen
e e e st s
over (Zg)". So, the probability that

3 WCw+is) +i(u s i) 20 (mod B)

81— i u and o are chosen independently and uniformly at random from
(24", By combining the two abservations, the probabiity that

T brinm
ol
3 v B i i) =0 (mod B)

ssiin ostgin

i psitive. Sinc the ovent Sg,cgey %h(y+i2) =0 (mod R) is indepen-
dent oy and 2, Cos cgpn T £16) = 0 (mod R) holds. O Fact 645
‘Combining Fact 6:45 and Lemm .25, e have the llowin,

Fact 6,46 1f ¢ < o, then h s o poynomil oftotal degree o most d.

Nowth thorem ollows by cmbning Fcs 643 .46 Tis conludes
the proof of Theotem 624






index-179_1.png
66 Biblographic Notes 165

. [BFLSO1] independently obtained two scilar but ncomparsble resuts.
Raghly spesing theso o papers show that svery lgunge n NP has «
probabilsic polynoniakime protocol fo the verfer that uses pobiogarith.
i rndom coin e ad commuicateswith s prover poblogarithmic i
ofinformation. n additon to the *scled-dow theorrt, the formar paper
Shows the following: I hete exists  deterinistc polynoriaktime algorithm
hat approximaies the sze of the largst clique in » graph within » constant
factor, hen NP C DTIME[2%"€1%") This was a remarkable schisvement,
becautefo docades resestchrs had b looking for resula o shed lght 15
he question of whether polymorial e pproximation of the s e
site within any facor between 2 and 2 s pesible. For the fst time,
strong evidence isgiven that spproximarion of the cliqu sizs within con.
Sant factor 13 ot porable under sme ressonable assumpiion about, NP.
Feig o a. sk show tha i ther st consants 0 < ¢ < I, nd d > 0,
ch that onecan approximatethecliqe sz within  factor of 2%+ sing
0 sgorithm that russ in time 2%, then NP C U, o DTIME[r= 7]

To describe the two resuls about NP, et POP(-(n), a(n) (s [AS35)
denote th s of ll angunges or whichthere exiss  probabilic polyno-
mial tin oracle protocol with the fllawing thre properties: () the verfier
s r(n) coina and examinesg(n) bits of th oracle on an input of ength n,
(i) the input belongs o the anguage, then there xiss a oracle relaive
o which the verfe aceepa with probably 1, nd (i) I the input does ot
elong o the anguage, then there is o aracle reltive to which th verifr
aceepts with probabiiy at leas 3. With this motatin the MIP — NEXP
Theorsm can b restatad a0 NEXP = U_q PCP(1,1) the sbov resl
sbout NP by Feige et al as NP C Uy PCP (clog nloglogmclog loglog )
1 theone by Babal t ol 3 NP C U PGPl log 7).

“The tw esuls bot. NP raied th question whether th polylogarth
mic number of random bitsand the communication bit ar tuly necesary:

‘Arora and Safr [AS98] made sgnifican progress towards that queston and
Showed that NP € PCP(O(logn), O(yIogm)). To prove this reult, Aro

and Safra. proposed a techaique of composing verifers—verifying computa-
on of  veifier by anothe verifer. Improving this technique furher, Arora
et al [ALM*08] reduced the second amount to & constant, and obesined
the s-calld PCP Theorem: NP = PCP(0(log ), O(1)). The PCP Theorem
States that every language in NP has a probabiltc oracle protocel such
that (1) the prover provides » proof of polynomial engeh, (i) the verfor
tosses Olag ) coins and examines only & constant number of bit of the
proof, (i) i the input belongs to the language, then there is . praof with
which the veife accepts with probability 1, and () if the nput docs not
belong to the language, then there is 1o proof with which the verifer sc-
copts with probabiliy st leas 3. This theorem is ptimal in the snse that
NP <. PCP(oflog ), oflogn)) implies P = NP [FGL*96]. In this mode the
verier'serto is cne-sided, i the sense tha it accepts each memmber of the
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version of program checking by Blum and Kannan [BKO5). The iteracive
proof for P#¥ combines the el teting procedur of ipton [Lip3] and the
Gownward sexeducibily by Blum, Luby, and Rubinfeld [BLRS3)

‘To comtruct an oracle protocol for NEXP, Babai, Fortnow, and
Lund [BFLOI] stipulsted that the polynonial held in th oracle is muli-
Jinear and developed & probablistic oacl protocolfor testing multlneaity.
I is natural o ask whether the requirement that the polynomsial should be
muliline be weakened s that only having  small degree i required. Thia
question isstudied in [BFLS91FGL*96. The goal of the Low.Degree Test
i the proof of MIP = NEXP is to ensure that  given funcion s close to
Iow-deggee polynomial. Once hishas been done o ll the unctions nvolvd,
e other bwo tess can b catied ut by simply sssuming tht the funcions
are ll polymomials. The concpt o hypothesizing that a gven funcion is
A lowdegree polynomial, calld slfesting. was itzoduced by Gemmell &
A1 [GLRY91] vt was fother explored by Rubinekd and S (R596,R596]
“The problem of computing a vale of fnction Knowing tht thre is an oracl
tha s clos o the function s clled el orrection,Sef-corection borrows an
iden rom random slt.reducibiliy of Abadi, Fegenbaum and Kilian AFKS9]
and was frst formally studied by Blum and Kannan (BK95|.

‘We note that the progeessfom Theorem 6.4 toward Theorem 6.23 was
made in only five weeks. Email snnouncements of PH C TP by Fortnow,
IP'= PSPACE by Shami, and MIP = NEXP by Fortnow again came out
respectively on December 13, 1980, December 20, 1989, January 17, 1990,
(For  detiled history, see an amusing survey by Babai [Babo0])

“The palynomiol interpolation technique was recived with great excite-
ment and invigoratd researc on nteractive proofsysems. Babai and Fort
now [BFO1] show o new charactriztion of #P by staight-ine programs,
G, Condon, and Lipton [CCLO4] show that evry angusge in PSPACE,
' bounded-tound muliprover inaracive proof systems, Lapidot and
St LS97) show that  ully paralelzed erson of the protoco by Ben-Or
and others (BOGKW3S]yilds a one-round “perfct aeto-knowledge” poto-
ol fo each anguag in NEXP, and Feige and Loviss [FL92 show that -
prover one-round interactive proof sysems exit for all Ianguages in NEXP
e noted fn Sect. 6.5 tht to construct & multprover protoco for a EXP
lnguage a prover in EXP is suficien, In other words, th orale of  prob-
abilsic oracle protocol or EXP Ianguagee can be in EXP. Based on this
abservation, Babai ¢ al. [BENW03) show that it EXP C P/poly then EXP
o ncluded in MA, a cass introduced by Babai (Baba5| Note that one can
prove EXP C P/poly — EXP = 3 by applying the proof of Theorem 116
to EXP in light of Sengupta's obsrvation (s the Bibiographic Notes of
Chap. 1). However,the collaps shown by Babai et al. seems stronger since
MA is kaown o be ncluded in 53 (RS98]

"The MIP = NEXP Theorem nturaly rases the s o translating the
theorem to characterzation of NP. Fege ot al. [FGL+96] and Babai ot
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of thi soction (Sect. 1.1) hav true converses. We state them in 5. then..”
Torm to stres the iteresting direction

Proof of Theorem 1.2 Let T be.a tally se that i <J-haed for NP Since
the NP-complete et

SAT = (1] i  stsabe boolean formula)

i in NP and T is <3-hard for NP, it follows that SAT<ET. Let g be o
deterministic polynomiaL time function many.one reducing SAT to T Let &
e integer such that (V)[o(z)| < 2]+ K} ince g s computabe by some
determiniatic polynomialtime Turing machine, soch a k indecd mut xist
since that machine outputs at most one character pe step

We now give, under the hypothesi of the theorem, & deterministc
polytomiaktime algorithm for SAT, via  simple tres-proning procedure.
The input to our agorithm s & boolean formula F. Without loss of general.
ity et it variables b by st let 1 > 1. We will denote the resul of
saigning value to some of the vaisble o F via expresions of the following
form: Fluy = True, s = Pale], where Tru denotes the constant true and
Flae denotes the constant folse. For example, if F = vy Vv V vy then

Flun = True, s = Flee = True v 13  Flse,

and
(Flos = True)fes = Fase] = True vy  Fule.

Our algorithm has stages numbered 0,1,...,m+ 1. A the end of each
tage (except th inalone),we pass forward » colection of oolean ormula.
Tnitally, we view ourseves 28 having Just complted Stage 0, and we view
ourseives as passing forward from Stage 0 » collction, C, contining the
Single formula F.

Stage i, 1 < i < m, assuming that the collection at the end
of Stage i 1 is the folowing collection of formulas: {F, .., ).
Step 1 Lt € be thecollection

True, Pl = Tl ... Fof = True,
Fale],Fyf = Pl Fifs = Flo]).

Step2 SetC'to be .
Step 3 For each formula / in C in arbitrary order) do:

L. Compute ().
210501 €1 o o " dos () = 50, then S 10

End Stage § €' is the colloction that gots passed on to Stage i + 1]

The action of oue algorithm st Stage m + 1 is simple: F is satsfiabe if
and only i some member of the (varable.frc) ormula calection output by
Stage m evaluates to bein true
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Gallry o Complsity Claes
A1 P: Determinism.
P =]

(L] L is coopted by » polynomialtime detrminisic
Turing machine).

P, determinisic palynomial time,is the class that is widely chought to
embody the power of easonable computation. In the 1930s, Gidl, Church,
Turing, and Post G431 Chud6 Tur36 Chut1 Post6 Dav8] asked what could
be efectively solved by computing machines—that s, what problems are
recurive? In fct, these founding figures went beyond that. n a rediscovered

1956 letter to von Neomann, Godel focused not only on the importance of

the number of steps 8 Turing machine may need to petform a cerain tosk

(deciding whether  formula has o proof f  given length), but also used two

particular polynomial bounds (inear and quadrati) as xample of ffcent

computation, in contras with exhastve seach (sce Har30,Sp92] for more
on this ltter). Von Neumann was dying at the time, and it does not seom
that e or Godel ever followed up on the ssues that Godel had raised.

Starting in the 1960, computer scietits, unaware of Godelsltter and
ite musings in this direction, began to ask which problems can be cficently
salved by computers. The theory of P an NP, and indeed complesity thecry
telf,sprang from thisdesteto understand th it of onibl computation.
The notion that polynomial time, U, DTIME[¥] isthe right class to ropre-
sent fensble computation was suggested by Cobharm and Edmonds [Cob6i,
Edm65] (who, again, were unavare of Godel's leter). Note that polynom.
al grow sowly and ace closed under composition (thu allowing subroutine
calle i the sens that  olynomialtime machine making subroutine call to
polynomial-me subtoutines yields an averal polynomiktime procedure)
These feaures support the caim that P s  reasonable resource bound. The
View that P losely characterize fnsibilty” is idely accapted,.

One might argue that an algorithm that runs for 1010 139 steps on
inputa of size n is ot practica. Problems are known that provably require
High-degree polynomial algorithms (arificial probloms must exist via the e
torministic time hisarchy theorem (HSGS]HUTO, Theorem 12.9], and some
‘what artificial ca-and- mouse games and pebbling problems [KATT9,ATKS4)
and natural problems are known that may require high-degree polynomis
lgorithms (petmutation group membership from generstors (Hof52 FHLS0],
sobotics configuraion space problems [S583)).

T conrs, many maural problems are known o have superpolynomil ower
bounds For cxample, Meyer and Sockameyr [ST2 nd Focher and Rabin
[FRTA show. respectvely,prolams that reuire exponental space and double
xponental hondeterminisc Unme The propems leted hare re naural, fun:
damental algnomiak e probims that may requre high-deres pooml
ot
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The form is the meaning, and indecd the classc Greek mind, with
an ntegity of perception lost by latr culures which separated the
two, firmly dentifid them.

— Vincent Seully, The Barth,the Temple, and the Gods [Scut2]

To the computer sientst, structure s meaning. Secking to understand na-
tares diverse problems with man's humbie resourcs, we simplfy our task
by grouping similarly structured problems. The resuling complexity classes,
such as P, NP, and PSPACE, are simply families of problems that can b
solvd with a certain underlying computational power. The range of nterest-
ing computational powers i broad. deterministic, nondeterminitic, proba-
bilisic, unique, tabe lookup, etc—and a sitably rich palette has boen de.
veloped to reflect these povers—P, NP, PP, UP, P/poly, etc. These classes
can themelves be studied in terms of thei nternal structure and behavior
“This chapter brifly reviews the deinitons, mesnings, and histoies of the
contel complexity classes coverd in this book.

“The “seected facts and theorems® lise n the tabls that follow when
possible give refetences fo thelr acts nd theorems. However, in those cases
‘wharo thefacs e presented n this book, th itaion n the right macgi is
merely to the chapter that presents the esul. This should not be nterpreted
s in any way claiming tha such reult aee due to this book. Rather, the
Bibliographic Notes section of the appropriate chaptr should be consulted
o learn the history and source of the resul

(Compleity theory is s0 broad and rih that in an appendix ofthis size it
‘would be impossible o define or colet the feld’s most important theorems.
Thus, the choice of theorems here i eclectic, with the goal simply of giv-
ing . resource pointin towards some of the resuls known for these lascs.
However, to mabing the theorem lists below more seful s staring paints
into the oriinal literature, wo have in some cases includod theorems whose
statements involve concepts or clases aze not discussed or defned in this
boak.
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P~ Potymomial Time
Pover
Feasbl computation.

Detation
U, e

Buigground
s dscrbed s embodyng the power of feaible computaton by Cob-
ham (Cobo ] and Edronds [Bam65]. The fd o design and amlysof sgo-
s ttemps o place . many poblems 3 posivle n P

Comphte Languagss
P s sountions wellknown complete langunges under <5 rductions (sno
the i compiled by Greenaw, Hoovor, and Ruzzo [GHROS). Typica P-
complete problems include deterising whethe  iven contextfee srammar

575 and etermining whethe  iven utput it o » e, et

i input s o (LadTSa]. Ko, Adachi, and Iwata (KAIT] hove shown

Combmaora g pTvRng KAl natra]compine probiems o

Sunple Problom.

Toa fxd, reaconable proofsysem, aking i i proof o T i  polynomial

i queston. 1 partcla, h polymomil timo wo ca check whether st
ek sl blaan orml .

Selcted Pcts and Theorons
T For sah , her e relatively aatural eoblea, havin to do with games
of pursit s evaion, whoee detrmin e requements sre 0 )
Ik
2P =L s P has sparse hard s with respect o logapace many-one
Feducions (o v Vgepace boaneb-ath- bl Feduciu)
(53530156, s i (O30, CNS06))
3 AL et e rankable (., hav & polymoniat ime computable functon
Uha, v any tring =, compates the mumber of tings i th e that
e Texiogeaphiclly o han o oqun to5) 4 P = PO
(G591, s tso (1R00)
4 Allinfinite P sets are comprossbe (.. ench P et A ha & pymomial-tme
computabie, onet-one functon f such that /() = ) if E = NEVP
(GHKo2, s o [GHS6))
5. U verydense P et b st sarse st of Kolmagoro-cary sings,
hen il ptynomiabime perudorandom genrators e ecute
e oe)

Fig A1 P
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9.5 Bibliographic Notes

Gill (GU7] and Simon [Sim5) indpendently introduced the class PP (5
mon e diffsent notation fo the chss, though). The dfniton of Gill s
Vi probabilsti Toing machines, il Simon's dfniton empleys ondt
it Turing machines. They both cberved that th claa i clsed undr
Complementaton (Proposition 9.5). They It open the qustion of whether
o claa i chose under snion. R [Rus5] and Beigl, Hemachaes, and
Wechsung [BHWSI] made. proress on the problem by showing the cosue
of the clss under symmotic dflrence nd et plynomisltme pariy e
uctions,respectivel. Bege, Reingold, and Sisiman [BRS5) afematvny
Toived the prablems (Theorom .15

"Tho appreximtion scheme (Defiiton 9.12) tht Beigl, Reingod, and
Spicman e in the proof i based o » formula of Nowiman [Newsd]. Pa-
i and Suks [PS04] appled Nowrman's ormul t show approsimations of
threshold circuits by paiy circis

o additon o the closure property unde itersection, Beigl, Reingod,
and Speiman showed » number o cosure propertie o PP, incuding clo-
Sure nde polynomial-time Ologn) Turing reductions, b they I open
he quetion of whethe the clu i closed ndr <F redvctions. Fortnow
“nd Reingod [FRO6] gave an afrmative snawer to the question by prov.
g Theorem 915, They sl proved Theorem 6.2, Later, sing » iferent
techniaue, Beigel and P [BFO] showed that PP an PL st coed snder
Paniform N reductions and under logspace-uniform NC reductions, -
spactivly, Caussnus ot a. CMTVSS) v Newnat'sformul to prove that
e caas probabilinie-NC' i closed undor itarection

Gupta [Gupt] nd Femner, Fortnw,and Kotz [FFK0d]wers the st to
formulatethe conceptof gap functions. Fnner, Fortnow, and Kurtz deined
th caas GapP, and Propoiton . s from thi paper

"The class PL is due to Gill GI77], but. is deiniton docs net require
hat the probabilstic machines be polmomil time-bounded. Jung (Junss]
prove that the two versons are entical, Allder nd Ogihars (AODG]
Show that this squality olds with respect o any oracle undor the RST
rostiction. The ST retricion st appears in a paper by Ruzzn, Simn,
20 Tompa [RSTS4]. The collpe of he PL. hsrachy (Theorem 8.38) i due
Lo Oginars (081%]

The cassC..P i duo to Simon (Sim75), who st proved (sing dificent
notaion) G C PP. Wagner (Wagdt] redicoverd tis s, introduced the
ame C._P, nd prove i closure under <%, reductons. A paper by Bigel
hang, snd Ogivara (BCO] presnts th olre “squarin technique”
(s Proposiion 9.8). This paper o proves Theorem 9.0, Gundermann,
Naser, and Wochoun [GNW00) shan hat . i cose e polynomin.
time poiiv truth-table reductions. Ogiwaes (OO shows tha C_P and
P are both cloted (dowrward) under poynoraktim postive Turig
Ceductions, Ogihars (O35 shows that s closuce under <7 rduction, ks
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accepts along the path 7 of T and F(x) = 1 otherwise, where the value of
o i the ith bit of the s-component of . Since the process of guesing the
bit b and accepting if and only i b= 1 has the effct of canceling the conti-
bution to the gap of T of the paths passng through the process, #£spr (z)

ez (z )

Whete = ranges oer all computation pachs of T on input . Sine the product
of terms chosen fom {+1,1) is 411 the number of ~L's appeating in the
product i even and i 1 otherwise, the second term in the above is cqual

o
II A,

[ ———
S 11 Ao

For cach u € £, le Q(u) denote the set of all computation paths of T on
input = whose 1-component i oqual to . Then #gspy () can be witten s

T ¥ &0 J] Ao

(o e idism

. the paths for ¥ and chose or the simulation of G are pairwise inde-
pendant fo each fited , this is the saime a8

5 atam) ] oot

Thus s(2) = #gap(x). It i asy tosew that T s ogarithmc space-bounded
and polynomil tme-bounded. Hence T witnesses that s € GapP. O

9.4 OPEN ISSUE: Is PP Closed Under
Polynomial-Time Turing Reductions?

s PP closed under polynormial-timo Turing reductions? The questionissub-
. By Toda's Theorem (Theorem 4.12), PH C PP Also, GP is included in
PFP. 16 PP s closed under Turingreductions, then P incudes both PH and
. Howevr, it s known that thre exist orscles reltive to which PH ¢ PP
and oracles relative to which ®P ¢ PP. These resuts ndicate that rela-
iizable proof techsiques, such 8 machine simultions, camnot sl the
PP = PP queston.
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closure under P-uniform NC'reductions, and its closure under P-uniform
‘AC-reductions are ol squal.
Allender and Ogihara [0%) define C..L, the ogarithmic-space version
‘numbe of its closure propertes. Allender, Beals, and
Ogihara [ABODS] show that the C..L Herarchy collapis.
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Step 2 N continues the simulation unl M enters the query state, but N
voids writng on the query tape by Keeping the head on el 0.

Step 3 Tnstend of immediataly entering the query state, N suspends the
imulation of My and makes allche potental queries of Ms on input .
This is carred out by simulating My on input = from each query ID in
T For each i, 0§ < [e] +1, each 1,0 < J < clogla] + 1, and each
yeain,

(a) N simulates My o input 2 from ID (s, 1) untl M enters the query.
state to gonerate the query sring corresponding to that ID; and

(6) 114 = bmem 3 = s a8 0 = g, then N records the answer
From the oracl into 4 varible ans

Step 4 N returns to the simulation of M on 7 that had been suspended
"t the beginning of Step 3 with ans s the oracle answer

Note that in Step 3b there s always exactly one combination o , 5, and
Chat passes the thrce equality test, and that gonerates the same query that
My would have made durin the sirulation in Step 2. Henco the value of ans
s precisely the answer that M; would have obtained. As there is no extra
nondeterministic move that N makes, the only difleence between My and
s that N inflats ts query sequence. Ths, for avery = € T and. avery
oracle A, #5spus(2) = #58pags(z). Define m(n) = p(n)[Zy]. Then m is
bounded by some polynomial. For very 7 € I, the number of queries that
N on 2 makes is precisely m(j=) and the query sequence is the same on all
computation paths. Thus, N is an obiivious RSTNL machine.

9.3.3 Collapsing the PL Hi

archy
Theorer 9.28 follows immodiately from the following claim.
Proposition 920 L™ = PL.

Proof Let L € PL™ via an oblivious oracle machine N and an oracle
A'€ PL. As we did in the proof of Theorem 018, we can assume that N's
Query stings are onger than it input. Lt p be # palynorial bounding the
runtime of N. Let g be a natural polynomial such tht, for every 7 € T,

« facena(z) 20D, and
eTEL e Haced() 2 2l

Lot m be a pelynomially bounded funcion, s defined above, that maps cach
integer n to the mumber of queries that N makes on each input of length n.
Then m(n) < p(r) fo all n. Fo each € E* and i, 1 < § < m(lz), lt v
dencte the ih query sting of N on . Pick  natural polynomial  uch that
r{n) 2 pn) + g(n). For cach 2 € 5 and w, | = mi(z]), It a(z, w) denote
the number of sccepting computation paths that M on fnput = would have
i for every i, 1< § < m(jz), the oracle answer to the ith query of N on
input i taken to be afcmative If the th bit of w i o 1 and otherwise s
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2 D-w140-1. Sincethe umber of v, ]
a0 1 < 2D, 52 et

P 4 oD r
20011 4 gl
1
<ot L
< !

mi(lz), such that w £ T(z)

-

Thus the claim holds,
Now deine
da) = ) — (D 1)),

Then, for every x € B, 2 € L i and oy if d(x) 2 0. We ceim hat
4 € Gapl, Proving this may seom casy at st glanc, o we have aleady
one something similar for GapP 1 prove Theorem 8.22. Howewer,th ma-
Chines hre st ogithnic space-bounded ad, o l 2 € 3, 3(2) i efned
s s of 270D tem that st indesed by w oflngeh (). S, fr
Sondeerministic machin to prodice s st gap oncion, t maY seom nec-
ity that the mchine b spce o sore . This i cvioudly mpossie
her, s the machines ned (o be logarithmic space bounded. Hence v
need trick.

By Propositon .24 th scond trm ofd i i GapL. W thus concentrate
on proving that + € Gapl. Lt G be  logrithmic space-bounded machine
Suck that 9 = #gapc. For overy 2 € 3, o(a)cam o written a5

Y a@w JI (Hsccollmwd) - #reigllz w)).

il s

Define T to be the machine that, on input € 5, simalates N on 2 as follows:
For each . 1 < 4 < p(), when N cnters the query sate for the ith time,
instad of making the query, i guesses o bt wi, simulates G on (e, ),
Tt to thesimulation of N with , as the oracle answer. During the
entio simulation the machine N counts wing a variable R the number of ,
1< < plJ), such that G rfected. AL the end of the simalaton, if N has
accepted then T accepts i and only if R i eve; on the other hand, i N has
fejoctad then T guesses one it b and acepts f nd oy if

Lt 2 be ixed. For simplicity, et m donote () nd for each i, 1 < <
m, ety denote ... Each computation path  of T on 2 i divided o the
components

b

Here w corresponds o the it w, ..,y T corresponds to the nondeter-
ministic moves of N on input 2 wth 1 a the oracle answers, =, cortesponds
o the nondeterministic moves of G on input (v, ) fr al . 1 < 1 < m,
and b corresponds o the gucss bt the end in the case When N's simulation
is relecting. Write E(x) = 11 N has accepted slong the path 7 of T snd
E(x) = 0 otherwise. For each i, 1 <1 < m, write Fi(x) = 13 G on ()
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taken t0 be negativ. Then, forevry # € B, oz, 14 (2) = facea(), snd
for every o € 519D,z T4(2) < 240, Since N is n ablivious RSTNL,
‘machine e can view it as b quey generator,so we may wse 14(z) o denote
the answer sequence that the oracie A provides o N on input .

By Lemma 825, ther exiet onegaive foncton g € Gapl, ad a stricly
positive functon h & Gapl such that, for all = € 5 an b€ (0,1),

s S 1 i)
o 0.< BERD < 5D ocherwise.
Detine o eachz € 3,

(= ¥ aew) [ slomomd
i s
ma
@= T Ao
ssigmian
for evry 2 €3,
), i L
el e s pan L

To provethe claim let 7 € 3. Firt suppose 7 & L. For

g9
@

)=

et

1 ()2 e e,

Because m is bounded by p, because 1 is a natural polynomial, and becsuse
the machine N is  length ncressing query generator,the sbove amount is
atlenst

L= plla- D1 5 1 _ geste,

Thus the raction 3 o et

=13 _ gmate=ty _ g1 _

Next suppose that 2 ¢ L. For w = T s(z,) < 1 and afz,) =
#accate) < 2090 1. For ater w of g e, ale0) < 2050

) € 2 B ),

Because m s bounded by p, because i » natural polynomial, snd be-
case the machine N is a legthincresing query generator, this s at most
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Lemma 0.25 _For cach L € PL and each polynomial , there exist Gapl.
Functions 95+ — N and h i 5+ —+ N* such that,for all x € £,

L i) = b, then 1 - 7700 < KB < 1 and
2 x00) 45, ten0 < 24el <20

The PL bierrcy is dofined wndor  retricon, el th Ruzzo-Simon-
Tompa eutiization (e RST relativizacon), tha tipulte hat nondoter
minibic spa bounded rscle uring machine mas b dtarmisisically

during query genration. We call  logaithmic space-bounded, polynomial
ime-bonnded machine working under that rstiction an RSTNL machine.

Defnition 9.20 A language L belongs to PL relative to an orcle A if there
erists an RSTNL machine M such that, for every z € &

€L Fapua(x) 20.
For any class €, PL = {PLA| A €C).

Definition 0.27 The PL hierorchy PLH is defined as follows, where el
ivisation s interpreted i the sense of Defnition 9,26

pus - e et rt ©n
s birarchy cllpss to PL

Theorem 9.28 PLH = PL.

To v thetheorem it suffces to show tht the second evel f the hieras-
chy, PLPL, collapos o PL. Tho proof i reminiscont o tha of Theorom 022,
bt more aseful tretment i roquired because o the space bounds imposed
on RSTNL machines.

9.3.2 Oblivious Oracle NL Machines

W say that an oracle Turing macine i obliious i its queriesare dopendent
sclly on the input, not on the orace. Let M be any RSTNL machine. We
can turn M into an oquivaent oblvious RSTNL machine as fllovs.
‘Without Jos o generalit, wo may assumo that M has exactly one work
tape. Let ¢ bo an integer constant such tha, for every nonempty € B,
M on 2 uses cols 1 ... clog ] o tho work tape for storago. Here gl is:
shorchand for [log ¢/, nd we will use this notation throughott this scton.
(Cels 0 and clogz| + 1 hok special delmiters to caution A's inite control
ot to move the head out of that region; hus the positon o s head ranges
rom 0't clog/z| + 1. We asume that the same treatment is applied o the
it tape o tha the rango of the nput-tape head is bocween 0 and [« + 1.
Wo also assume that the query tape of M i write only,that the calsof the
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such that,for every = € %,z € L if and only If the probability that M on
nput  accepta i at least §. Rocall also that #L, s the class of llfunctions
7 such that for some logarithmic space-bourded, polynomial time-bounded
‘nondeterministic Turing machine A it holds that  — acens. We define the
Iogaithmic-space version of GapP, namely, Gapl..

Definition 0.23. Gap. = (#sapy [M is o ogarithic space-bonded,poly-
momial tm. b ordetsrmimistic Turing machine).

Proposition 924 and Lemma .25 are analogous to Propositon 9.3 and
Lemma .11, respectively. Note, howeve, that pact 4 of Proposition 924
deals with only polynomially many terms. The proofs of Propositon 0.24
and Lemma 025 ae quit similar o those of thel polynomial-ime versions,
and thus are omitted,

Proposition 924

1 Let £ = 2 be o logpace-computable total function. Then  belongs
to Gapl.
2 #LC Gupl.
3. Lt £ € Gapl and let g B+ — B be o loopace-computabe function.
Define h for ll 2 €3+ by
hiz) = 1)
Then b€ Gapl.
4 Let § and g be GapL functions. Define h for all € 5 by
&)= f(a) +o(x).
Then h € GapL. In generul, for cach polymorial p and { € Gapl, define
hforalize S by

Ma)= 3 S,

15550
Then h € Gagl.
5. Let g and g be Gapl functions. Define h for all z € 5 by
h@) = f(a)ate)

Then h € GapL. In general, for cach olymomial p and f € Gapl, define
hforalze 2 by

LOERS | g (CT)

rsigple
Then b Gagl.
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1123 A Polynomial- Time Search Procodure for tmas. To prove
that L € P, we wil develop a polynomial-tme procedure tha, on input 1 €
-, onerats o list of strings in TP such that, i s (2) s define then
the list i guaranteed t0 CONain i) The existoncs of such  procedure
imples £ € P as ollows: Let M b o Turing machine that, on fnput 7 € 2,
runs the enumeration procedure to obtain a ist of candidates 1o ue(2),
‘and accopt if the list contans . string y such that (z,y) € A and reject
otherwise. Since the enumeration procedure runs in polynomial time and
A € P, M can bo made polynomialtime bounded. Snce the output st of
the enumeration procodureis guaranted 0 contin () i it s defined,
M accepta i 2 € L. 12 ¢ L, there i 10 y € B0 such tht (2,1) € 4, 0
M rejocts . Thus, M correcly docides L. Honco, L € P.

In'the rest of the proof we willfocus o developing such an enumeration
procedure. To desribe the procedare we need 1o deine some notons.

et n > 1 be an intger. Lot 1 bo a subset of % Wo say that 1 is an
interval over S if ther exist , 2 € B such that

vSramdl=uemlysuss),

We cal y and 2 rspecvely th Lefe end and the right end o I, and wite
{302 o donote T T = 0] and J = 9,2 b two inarals over 57, Wa
sy tha T . J ave diin i they sre dioit s s, e ither <y or
I T and J are disint and 0 < 3, we say tht 1 s leicogruphicaly
mllr than 3, s wite 1 <.

Lt € 5+ and et A be a st of pairwise disint ftervals over 57, We
s tha A1 nie for 21

26 L= (1 € Autma(®) € 1]
Note that for all € B+

o (0700, 190] ) i ice for = regardles of whether = € L, and
@iz ¢ L, then every s of pairwise disjoint intervals over T2 is nice
forx,

Lot 7 be an ordered (possibly empty) list such that, if 7 s it empty then
each antry of 7 is of the form () for some 1 € £ and b € (0,1). We
call such a lis . hypothesis lst. We say that & hypothess st 7 i cormet if
every pai (1,2 in the lst satisfies xs(1) = b Let 7 € 5 lat & be a s of
pairwise disfoint intervals over DA, et T be o subset of A, and let 7 be &
ypothesis lst, Wa say that T s a refiement of A for £ under 7 if

(A3 nice for 2) A (r i correc) == i i for .

The following fat states some useul propertes of refnements





index-269_1.png
93 The Probabilistc Logspace Herarchy Collpses 255

query tape are mumbered 0, 1, .., and that each time M enters the query
Sate, the word witten an the auery tspe s submited to the orace, the tape
s bianked (by magic, the head is move t cell 0, and then M enters the
state gy s Iftho word belonga to the oracle and the sate gvo otherwise,

Now we mardiy the behavior of M in thre stepe. Fist we roquire that
there i  polynomaial p such that,fo all n > 0, p(1) > 1, and such that, for
each 7 € £, M on input = makes preciely p(z) aueris on every compu-
ation path. To et thi requirement e p(n) be  natral polynomial with
o psitive constant term such that M i p(n) i bounded. Snce () is
natural,fo al n > 0, p(n) > p(0). Since the constant term of p(n) i posi
tive, () > 0. Thus, for al 2 0, ) > 0. We iy M s that i count
the pumber of queris that it has e o ae and ds durmmy qeie (0.,
Sbout the empty sting) Just before hltng to make the number of queries
cqual to (). Call this new machine My Sinc p i & polynomil, counting
the mumber o queries requires nly O(log ) space. Thus M, i an RSTNL,
machine

Next we requie that My have a specia tate en such that My enters
Gy xactly when it is bt to begin generation of » qery. To meet thi
Feqitement we modify My 50 that it keepa track ofthe posiion ofthe qery
tape head and, whenever the action it i about to take invlves hifing of
that head rom cell 0o 1 it pute offthe move for one step and g n and
ot of g Call this e machine M Then M s an RSTNL, machine.

Finaly we replace each quey of My by sequence of queries conistinof
l potental querie of My. For each naural umber n > 1 e T, be the set.
ofall query 1D Istantaneovs desciptions) o M i whichthe seate s gy
More preciely, T i the se o all tipes (i) uch that 0 < < [« % 1,
0% 5 elogla] 4 1, and € Te815, where T in the set of all ymbols
(incuding *blank”) that may appese on'cel 1, .., clog| of M. A query
1D (.5, 10)eepresentathestuation in which M s i tate g, and s nput
tape head is positioned on el ,its worktspe head is postioned on cell 1,
a0 the contents o the work tape on clls 1, . log = are . Since My
encrats it query deterministiclly o very % € I, ll possibe queres
510y on 7 can bo generated one siter another by cying through ol IDe
T, nd simulcing My on 2 fom 1 i My enter the auery state. Such
an enumeration require only Ologn) apo cells

So, we now madify My to consruct & new, twtape machine N that
ehaves s ollows on an input = € N simulates My on  using tape 1
wiileKeuping track of My's state g, input-ape head postion i, worctape
ead position 7, and worktape contents 5 on tspe 2. When My accepts
or ejeca N docs the same. Whenever M enars state G, N docs the
Tollowing

Step 1N records the curent values of , 5, and 1 on tape 2. These values
will b refrted 10 8 1040 s e, 300 Ui, Fpoctivly.
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exactly k rounds of queries regadles of its oracle. Wo will eplace M by
& now machine, M’, that on aach input = simulates M on input 2 with the
following two additional tasks: (1) 11 M enters the query st for th (k+ 1)st
time, then M’ ejcts z without executing the curret step of M. (2) It M
halts and if M made fower than k query rounds, M' executes additonal
ignored query rounds so 8 o malke the total number of query rounds on
input = equal o £, and then ccepts o rejects according (o the oukcome of
the simalation of M on input 2. The two additional tasks do not increase
the computation time signifcancly. Since M is polynomial time-bounded the
e machine M can be made palynomial ime-bounded.

By “configuraton” of M’ we mean an object conssing of the contets of
it ape, the position of it heads, and it stae. A confguration deseribes
the exact condition the machine M’ i n. Suppose that M- has h work tapes.
Lt T b the union of th tape alphabets of M', which includes (0,1). Lat §
e & symbol not in T and I = T U {8). Let d be the smallst integer such
that the cardinaliy of ' is a most 29 Fix a d-bit ncoding of the symbols
i I, Tuke any confguration 5 of the machine A, whers A" has z on the
input tape with the head located on cell ,,for aach i, 1 € § <, u, on the
it work tape with the located on cel p,, and g on the query tapo with the
head located on cell . This confguration S is encoded by replacig each
symbol of I sppearing in the word

Sz SySaSpSuns- Spsun

by s dbit encoding. Since M s polynomil time-bounded, there i & poly-
‘omial p such that, fo overy z € 5, and for every configuration $ of M- on
input 2, th encoding length of  is at most ()

Define C o be the st of allstrings (7,1,6) that satisfy the fllowing two.
conditions:

ezeTizladbe (o)

« The binary encoding of the configuration of M’ on input = relative to A
when it (& - 1)t round of queries ha longeh atleat  and b i equal to
the ith bt ofthe encoding.

Then C i plynomialime (£1)-round truth-table reducible to 4,50 by ur
induction hypothesis, C belongs o PP. Wo claim that L i polynomial-time
tw-round truhetable reducible to A © C. To prove his caim, note that the
confguration of M" on an input 7 € I with oracl A can be computed via
parallel queries

(100 (2pll) 0 (5 1) o e 1)

o the C part of the orace, whro p is & polynomial such that, for every
€ 5 and overy oracle Q, MO on input = hlts within p(z) steps. If the
encoding length of the coniguration i d, then the oracle gves & positve
answer to precisly one of (z,4,0) and (x,51) for each i, 1 < 1 < d, and to
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Thenfo very € B the tllowing conditons hld:

€ L, then (5 T) = 1,20 hat 58 in ot st 1 -
pere iy

102 ¢ L then e(a,T) = 0 and for every w # T, 24531 is between 0
and 2700, Sin threace a¢ most 20 many  f lngth m(e), 350
e between 0 and 22040g-r D = 1

Ths, fo every 7 € 5, 2 € L if and only if %21 > §. Now deine H(z)
26°(2) - H(z). Then, for every 7 € 5, = € L i and only it H(z) > 0. 1t is
asy 10 see that H(z) isin GapP. Henco L € PP. This coneludes the proo
of Theorem 915 Q" Theorem 018

0.2.3 PP Is Closed Under Constant-Round Truth-Table
Reductions

We inally extend the closuro property of PP to its strongest known fo.

Let k> 1 bean integer. A language A i polynomial ime k-round truch-
tabl reducibl to & anguage B (write A <[y B) i there xist  polynominl
time-bonnded oracl Turng mackine M such that M makes exactly k ounds
of parallel queries to it orade and such that, for evey = € %, % € A if
and only i AP on input = accepts. Let M be a machine that computes
polynomialtme k-round truth-tabl reduction. Wo envison that M executes
a query round as follows

 Let [y, .., ] be the ls of queies to be made. The machine M writes
o the query tape y1# - ##, Whete # i  symbal not in 5. Then the
‘machine M enters the query sate

o Letb = by - by, where for every iy 1 5 < m, b = 1if s is  member of
the oracle and b, = 0atherwise, Inthe next computation stp, th allowing
‘w0 things oceur. () The word on the query tape i (by magi) replaced
by b o that the first lettr of b stored n cll 1 ofthe tpe. () The head
on the query tape is moved to cll 1.

Now we prove the theorem that states the closue property of PP in ts
strongest form.

Theorem 0.2 For cuery k > 1, PP is closed under polyromialtime k-
round truth-able reductions

Proof of Theorom 0.22 T proof i by induction on k. The base case
s 1, which we bave aleady proven s Theorem 915, o the induction
Sep, e K= ko > 1 and suppos cht the clim ol or ol vl f e
U k. Let L be <hy-reuibie o A € PP v polynomi-time Turing
machine M. We may eoume that fo evey = € 5, M on input = makes
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(a4 is precisely the ith query in the second round of M’ on input

2 with A" s the oracle, facen(:(a,i,T) is ot last 20010

20001, Since SEEED) 5 1 1100 ad l tho erms appening i

(1) > 200011 — 277 0), This is cqul to

-1 o

=1 _ g0~ _ g0 =1 _gen,
s is more than 290050)-1 — 3 On the other hand, suppose () & B.
Then facen(a(z, T (2)) < 200D — 1 For every w # [ of ength

e facen(a(e ) s ot most 29051 and 580 i . st 704D,

Since the number of w # T is 2200 — 1, 55 is at most
(@8I _ 1) (2 _ 1ytsg-rd
1 4 20 g
=1 4 90D~
piptan)-1 _ 1
B

Thas the dlsim holds
Now define

H(e)

(e - isntan.
o othrwise

Then by the above csim, fo every = € 5 and iy 1< < p(), (=, € B if
nd only f H(z,)) > 0. 10 i exsy 0 sec that H i & GapP function. Hence
B PP This proves the theorem. Q' Theorem 022

Docs PP have even stronger clsure propertes than that expressed as
Theorem 227 The logical next step would be for Theorem 9.2 to extend
to nonconstant £, perhaps k = O(logn). 10  can be outright abitrary then
we are in efect asking whether PP s closed under polynomial-time Turing
reductions, i, whether PP = PP This is an open question, and aserts
that w0 classes fn the counting hierarchy” P, PP, P'7, PP, PP,
are equal, e, PP = PP (which is not known to imply other equaliies
in tha. hisrarchy). Nonetheles, we show in the following secton that the
analogous hierarchy based on logspace does calapse.

9.3 The Probabilistic Logspace Hierarchy Collapses
9.3.1 GapL Functions and PL

Recal that a language L belongs o PL if and only if there is a logarithmic
pace-bounded, polynomial time-bounded probabilstic Tuing machine M
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neiher of them for any i, d+ 1 < i < pile). Onee the configuration has
been computed, the query strings i the A round can be computed in ime
polynomial in . Then the res ofthe compatation of M” can be simulated
ith a sinle parallel query round to the 4 pat of the orace

We have proven the concuson inductvey for & > 2, but ot for k = 2
We need to show that PP is clsed under polynomial-time two-round truth
bl reductions. Lt L be <%,reducible to some set A € PP vin machine
M. As discussed i the fst part of the proaf, we may asume that for every
2 € T, M on input = makes precsly two rounds of queris reardies of
it orace. Furhermore, we may assume tht ther i a natural polynorial
p such that,fo every 7 € I, M on inpu = makes at each round precisely
) queric,each o ength (), rgardioss o s orace. To see why, et p
e naturl polynomial ticly bownding th rontime of M. Wo wilreplace
Ay it padded verson A" = (0%12| > 0 Az € A}, Then, for each input.
2 €T, aquery  to A can be replaced by the query 0%0<0- i1 1y to 4" (we
ore are tacitly using the fct that p(l) 2 ]+ 1 for cach such query ).
han we mediy M 50 that bforeenerng he query state M checks hether
the number of query srings currently placed on the query tape is (). 1t
not, M appends suffiintly many copesof a dummy query 0%07) o the s
o make the umber cqua to p(). Cal this new machine M.

Defne B = {(z,1) |2 € 5 A1 <1 < piz) A and the ith auery of M’ on
input 2 with orale A’ the second round i in A'). Then L
w0 A @ B. Snce A € PP, A" belongs to PP. Thus it sufices to show that
Bepp.

Since A is in PP there xist  polynomial tme-bounded nondeterminiaic
Turing machine N and  natural polynomial g such ha, for very 2 € 5°, N
on input = ha precisely 280 computation patha and N s uch that € 4°
i and only if #nce(x) 2 200D, Define r(n) = p(r) + a(p(m) + 1. Lev:
9 be the query generator ortesponding t the frst auey round of M-, By
Lemma 0.21, there exist GapP functions + 2 0 and £ > 0 uch that or il
steings 2 a1, 1€ £, th fraction 2451 i between 1 and 1~ 170
610 = T4 and is etween 0 and 24 otharwise, Define, foral € 5+ and
6156 p(al),

a((z.)

w3 puentann Lol

=

Here 2(2,i, ) denotes the ith query that would be made by M’ on input =
i the second round in the case when the answers to the first. round queries
are provided by the sring . Put another way, for each 5, 1 < 5 € p(Jz).
the answer to che 3th query i reated as being afrmative i the jh bit of
i1 and treated a being negative othervise.

We claim that for all £ € 5 and i, 1 < § < ple]), (x,0) € B if and.

only i SE20 3 200~ T prove this caim suppose (7,0 € B. Since
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)

T a0

rsigme)

Where 0(2) = Amo U1, -+ mge): Then for all srings 7, € 5* the fol-

oving condiions hld

o s((a,) 20 and t(z) >0

< It ful £ m(z), hen 24520 =0,

Sl ful = om@) wd v £ TiE), then 0 < L) <

2 minlain. o). Sincs g is natural the upper bound s a¢ most

a-oCelnl ). Since g i3 egthncresing and 4 s naoral, this
bound s at most 2-9(D < 271

T T e 2 e S 1 () m i, Sice s
aatural the lower bound s o et 1 m()2-S()- i),
s lngeh-incresing nd g s natural th boundis a eat 1—p(z/j2-¥0%)
Since ()= i) £ () s 7)< 4 for ., e e b a0
e 1- 200,

This proves the lomma. Q Lemmaozl

Now we turn to proving Theorem 0.15.

Proof of Thoorom 918 Let 4 € PP. Let L be <-reducible to A By
Propositon 9.19 thete i palynomialtime machine, M, computing a truth.
table reduction from L to A that makes ot lsst ne query fr sachinput, nd
by Proposition 9.2, there xis some polynomil-time query generator g snd
some polynommaltime evaluator e that Jintly achieve the ame efect 38 M.
Without lossof generality, we may assume that i length-incresing. 1f ot
e il eplace Ay 4" = (012 Oy € 4) and, for sl 2 € 3, replce
the value of 9(2) by Au(0" 1y, ... 0144), where g(2)

A'is in PP, and this altered anaiog of g remins polynomil-
“ndis a lngtheincreasing query generator.

Deine 1 to be the function that maps each 7 € 5 to the numbe of
(not necesarly disinct)elements i the ls g(z) encodes, Let  be a natural
polynomialsuch that, for every 7 € 5 m(z) € p(z]). Define () = p(n) 2.
By Lemma 021, ther exist GapP functions s : 5" —» N and ¢ I+ —+ NY
such that, for ol 2,1 € 5°, the following two conditions hod:

« T facion 2455 i bowen 1~ 2704 and 1 if 10 = .
« The faction 245 i botwen 0 and 70 erwise,
Detie 5% N for sl € 3 by

Y elnups(lzu).

=

sl =
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the program of M into two part, query generation and evaluation of oracle
ansvers. More procisly, we have the following propositon.

Proposition 920 Ifa language L is polynomial-time truh-tabe reducible
0 a language A, then ther exist some polymomial-time uery generator 9
and some polynomial.time computable evalator ¢ : B+ x = (0,1} such
tht,for cach z € 5,

2ELNY = el T =
Below is 8 ke technicl e that s used t prove Theorem 915

Lomma 0.21 Let g be o polynomiak-time computabe, length-increasing
query generator and let & be a lnguage in PP. For every polynomial r there
erist GapP functions 5 + 5+ — N and ¢ - £+ — NV such that, for every
2,1 € 37, the follouing two conditions hold:

o [ =T}, then 1 - 2-70e) < 2o <

o Jw AT, then0 < el < 97700

Throughout this and the ollowing sections we wil us the trm natual
pobymomial o reler to unvariats olynomials with posiiv coeficents. For
oy nivriaea pynomial  that ok asura here el polymomisl
i that, o ety () < (o). N hat evey nara poymerl
strictly increasing on domain [0, 00); i.., for every integer n > 0, the value of
h plymomial a s e chanthe vlu f ch plynomil st 1. Note sk
ha the e fnaturalpolymomiae  coed unde aditon, muliplcaion,
30 compontion. More prescly, fr ll natral polynomiia  and g, he
polymamiae () +4(n). P(m)a(n),and () e matuenl plymorit
Proof of Lemma 021 _Let g and A be s i the statement o the .
Dein b the function that mape eneh 2 € 5 t the umber of cements
(1o necessety stint) i th s that 3(2)cncode. Lot 7 be 8 polymomial
such that, for all z € £*, m(z) < p(|z]). Let r be an acbitrary polynomial.
Deine gt be  nnural palyomial such that, o all ng(n) > 50 + ().
By Lermma 9.1, ther xist GapP functons £ - — N and f 2+ N¥
ouch that, o ally € 5 and b€ (0,1),

o 1o 2ol < 0 < iy 4) =, and
o0 S < 2700 otherwie
Define 5 5 x B - N for all 2,0 € ° by

1] # m(z) then s((2,1)) = 0, and
o i ] = m(z) then s((e, ) = Tlygvgome sl ).
and then define ¢ 5 — N¥ for all 2 € I by
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Proof of Lemma 9.1 Now we tun to proving Lemma 0.1 Let L & PP
and f be 2 GapP fnction witnesing, i the sense of Proposition 0.4, the
membersip of £ in PP. Then,fo every z € 5, the absalte vlue of /() s
et one, Letm be a palynomial such tha, for evry 7 € 5, the sbsoute
e of 1(2) n st most 27, Lt 7 b an abitzary polynomial. Deine:
H(e) = B e /(2D

(5 1) = Angy e (), a0

(5.0 = Bt (=) ~ At an )
Then, for every € I, g((£,0)) + a((z, 1) = A(z). For every 7 € £, by
part 1 of Lemma 913, Spepeep(/(2) = BFA and since o((2,0) +
9((21)) = h(z), 1 = S (/(2) = 555 So, by Lemma 913 and the
st claim o the previous sentence 1 -0 < 8ed) < 1 i f(z) > 0

and 277D > 250 > 03 (2) < 0. Since A2 = 1 — HE v have
177700 < S8 < it () <0, and 2 2 S 201t () >0
Now it remains ts provethat both g . rein Gapl, bt tie i ey to
prove because we have Proposition 9.3, We vil av that veseaton a8
Cris o th reader, Q" Temma 011

9.2.1 PP I Closed Under Intersection

Al the groundwork has now been done, and o we may give the proofof the
closure of PP undr intersection.

Theorem 9.15. PP is closed under interscction.

Proof Let L and I/ be rbitrary languages in PP. Let » be the constant
polynomial 2 Let g and h b the two functions given by Lemma 0.1 for L
and 7 and ot g and b those for L/ and 1. Fo every 2 € E°, the following
conditions hld:

S e L and0.< B <  otervs
12 ER < itre 1 and 05 S <} oherwi.

Define
2@y 3

(1)

)

W W)
For every 2 € 5, i x € L () I, then the frt two terms of p(z) oz both
greaer than or cqual to § 50 plx) > 23 - § = 0; and if cther 7 ¢ L

o1 ¢ L, then one of the two is at most | and both e at most 1, 50
Pl) 31 <00 for every 2 € B,z € L (1 i and only f p(z) 2 0.
Define the functon T by 7(2) = 2h(s)h'(x)o(z). So

T(@) = 2ol N (2) + o (2, 1)h(z)) — Bh(a)W'(a).
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e, o MaikP..,see @F, e set, 10030, 31- 30 3. 301 00,300
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2. For cvery positive integers m and , both A (2) and B (2) are poy-
nomials n 2 of deres O(rm).
3. Forall integers mr > 1 and every integer 2,
-2 < S <1 md
)i S s €1, then 0€ 8, () <2

Proof The proofs o (1) and (2) e by routin calculation. We leave themn
o the reader. To prove (3),lot. m and r be posiive integors. Frst consder
the case when 1 % = < 27 In this case Pr(s) > 0 and Po(—2) < 0. We
prove the fllowing claim.

Claim 914 If1% 2 2%, then 0 < Po(s) < ~Z2fr2

Proof of Claim .14 The claim clealy holds for =
252527 Thero i 0 wniaue £, 1% 1
b that i, Then (1) 2 < = and () 2/2 < 2. By combining () and (i) we gt
0 (22) < §, and from (i) we et ++2° > ¥, and this, § < |2~ 213
By conbing the two inequaliis, we have (= ~ 21 < S22 Noto that
S1< e 4 Land =] <242 for every §,1 <6 < m. Thus, in light of
the defintion of P, P(2) < ~22-2 Q Claim 014
Now by the above claim 0 < Po(z) < ~2o{=2. Combining this with
Pa(2) S0 yieds Qn(2) > ~Z5f=2 > 0. Thus

ox < (G- () e

Since Ry (2) 2 0 and sinc for every § 20, (1+8) >0 and (1+8)(1 =) =
128 <1, we have

. So suppose
m, such that 2 < 2 < 241, Lat £

128(2) > 1R () > 127"

JR
TR

Hence (3) bolds.

‘et consde the cae whn 2" < = < 1. or this rang of vaes
of 2, n ght of Claim 9.14 we have 0 < Pa(5) < ~Z515_ This imple
0<Qns(e) < ~Pn(). Thus

s (B e

This implics

Snel) = <

Py
FoRE =)
Honce (3b) holds. 9 Lonma 013
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o) = v - . Deine By to e the set of all ufthy -+ by,
by by € 5, Such that

by - b € Bo,
s the integer such that fo(u) € (). Sinco Bo € P and Jo € FP,

wher
it helds that B, € P and /, € FP.
Let 8= xp(c). Let & B and ket fo(u) = vk - s Then

whxo(e) - xo(w) € By = whxon) - xo(o)s*' € By

Since 4(4) = ot - Hok1, we have tha the pai (7, B4) witneses
hat C <., D.

Defne funcion / from 5 to the st of all ktruth-table conditons ss
follows: For exch u € B,

e

where 4(4) = u# - #uush and @ is the boclean function defned for all
b€ (01 by

b, .. be) = X, (b - )
Since i € FP and k s constan, / € FP. For every u € 5,
wEC = whto) - Xo(w) € By

o),

ant
o) - x0(0) € By = alxo(u) - xo()
where £(4) = ufh - . So o all € 5,
WEC e f(0) i st by .
Thus, the satement of the roposition bolds, O Propositon 111
Sippose that NP has » sparse <J,-hard s, S Snce L was an arbi
rary mmber of NP, it suffices t pro tht L € P.Sice LA, p] € NP,

LA, I<E,,S. So, by Propositon L11, there exist some k > 1 and f € FP
such that, fo all € £, /(u) i » ktruth-table condition,

e LelAR > 1(4) i saifid by .
I prepaction forth remainder o the pro,we defin some polynomial. Lt
1 be s el nceasing polyno

12,91 < (1) Let o be  tricly increasing plynomistsuch that fo ol
€ B ery query of £(u) has lngth t mast () Le 7 be o srcly
incrasing potymonial suchthat o al integers > 0 1557 < 7). Dfine
4(7) = PGl (). Then, o ll 2 € 5,

1w € 51 Gy & 220D)u is o query of £z, DI} < i)

Defne (n) = k2%(2q(n) 1. Alo, foreach 0 < d < K, define () = (k—
@124 4(aq(m) + 1)"-% Note that 1o = r an r i theconstant 1 polynormial,
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Since h and K aee both poritive, for overy 7 € ¥, 7 € L) L' if and
only if T(z) > 0. By Propsition 5.3, T € GapP. Thus, by Propasiton 0.2,
LnLerr E}

For every L and L', L 1’ = TTVD. Thus n light of Proposition 9.5,
we have the following corolary to Theorem .15

Corollary 9.16 PP is closed under union.

Coralay 0.7 xendsthes el 0 o  much stongerconlsion
i s under o o meseion. Tt v ‘e Coriy 917
il ot s s s el bt PP 1 o nde ine
iom 420 sy 4 U B <k A5 5 08 AN B S A B

Corollary 9.17 PP isclsed under polynomiaL time bounded-trth-tale re-
ductions.

Proof Let A € PP and L bo <k reducible to A fo some k > 1. It
ks, v augmrting Appenix 55 defition wih the fact st we can
o g aeries o & way ot 0 make o k- rednction ahays sk
iy £ querin ha Chte s & plynoial U bounded orng mchine
¥ s tht o ach gt =€ 5 M gnertes b of g v, 1)
i Fny bosean fonction o, mch the £ € L 1 0d oy o

lXaln) - xa)

The y's s cr e oncions o 2. For enc it stng b= by - by, dfine
50t e the ek of ll 5 € I such hat the beclea funcion o fhat M
generates on = has the valve 1 st b Fo each 1 <1 € , define T to be
o s of sl 7 € 5 such hat the it sring tha M on nput  generaes
belongs to A. Similarly, define 7% with A in place of A. By Proposition 9.6
PP o closed under <7 rductions, s for ey §, 1 < § € £, 700 blongs
o PP urdhermots, e PP i closed unde complementaion, for aery 5
TSIk T b in PP. Now

0 (s )

non E24

Since PP s closed under ntersecton and k is & constant, cach i, 1, 1

iy T s in P Sosnce PP s cosed under nion and 2 s convant,
LE, a

9.2:2 PP Is Closed Under Truth-Table Reductions

The following result
the reslt of Sct. 2.1

Theorem 9.18 PP is closed under polymomial-time truth-table reductions

o general that it mplics, as each consoquences, all
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In the next section we wil prove various clsure properties of PP, pro-
cseding from ntersection and union towards polynomialtime constant-found
ruttable roductions. I the res of this secton, we demorstrae th use-
flness of GapP-based characteriations of complsity cases by presenting
som closue propetiesof C._P.

Recal tht C. P is the class of angunges L for which thre exit & poly-
nomial p and a language A € P such that, for evary 7 € 3, 7 € L if and
only i the number of y € T0%) such tht (z,3) € A is exaetly 2205
By  proof similac to that of Propositon 9.2, we can obtain the fllowing
characterization of C.P in terms of GapP functons

Proposition 9.7 Let L be any language. L belongs to C.P i and only if
ther crists some J € GopP such hat, for every 2 € £, € L i and only f
1) =0.

A simple twesk—squaring the function f in the above—gives us the
strengthened diection of the ollowing propsiton.

Proposition 0.8 A language L belongs to C. if and only i thre exists
@ nonnegative function f € GopP such that, for every = € £, 2 € L if and
only if () = 0.

A perceptive reader may motice the similariy between C_P and coNP;
oy replcing GapP by #P we cbtain o definition o coNP. Indeed, tothe bast
of our knowledge every closure property possessed by coNP is possessed by
G, and vice vrsa,and evory colapse of educibiliy degrees that hods for
<N also holds for C..P and vice versa. We now give some exampls. It is
‘well-knownthat coNP isclosed under polynomial-time disjunctivetruth-table
reductions and under polynomial-time conjonctive truth-tablereductions. Wo
Show blow that these closures hold for C.P.

Theorem 9.0 C_P is closed under polynomialtime disjuntive truthtable
reductions and under polmomial time congunctive truthtable eductione.

Proof Lt A € C.P and take  to be a GapP functon withessing, in
the sense of Propasition 0.5, that A € C.P. Suppose that » language L is
soducible to A via a polynomialtime disjunctive truth-tabe reduction. That
reduction maps each = € E° to o lis ofsrings, 6(2), such that 3 € L if and
only ifat last one membe of the lst belongs to 4. Define the functon h for
Alzestby

i)

Whete (y, .. Un) i the s (). Racll that by conventin [Ty, /(4)

1. By parts 3 and 5 of Proposition 93, h € GapP. Let % € & and et
5(8) = (s ). 11 € L, then thee exiss some §, 1 < £ < m, such that
34 A o thia e have /(3) = 0, and this implies h(2) = 0.1 € T, then






index-363_1.png
~ nipotent_ 103
Rorashabla 167,174

~ Ronslvable pemutation 167,165

~ Cnierof s over, of  grouy

~ permutaton. 167168

ot
ower, o polynomials 264
Gru 3. 104

o=y

G an orach anewer 186
Gundermann, T 26,27,106,107,260,
i

Gupa, 5. _88,106-108, 260
Gurevih, Y. 260,255
Guruswa, V. 166

Halparn, 3274
Han, ¥ 37,265,277,28,205
harines 152 NP-haid
Martp 3

NP 166

Cheg s

Snegh a

< 12
= of s, classifying via reductions
505

rlaive, of s 305
Hard G163

Hartmanis, 1. ' ix.22.24,20-20,105,
07165, 231,261,260, 270, 272,

i, 252 285, 300

Hartmanis Immerman-Sewslaon En-
oding s Encoding, Hartmanis
Tnostman Seweloon
Hartmarie-mmesmanSewelson
Theorer s Encoding,
Harmans [mmerman Sowelon
Histad, 3. 14,165,252,265,500
hesd

Sinputape 255

- worktape 255

Hebare B ix

Hallr 1. 87,289

Hemachandra, L. sce Hemaspaandes,
T

i, 08,2mm,

Index 0

Hemmpel, H. ix,28,273, 308
Hormann, M. 108

Hertrampf, U. i 87,58, 107,104,
277, 207, 298,301,303

hiorarchy

= alternation-bused, smallspace 27
= arichmetical 270,271,277

= boolaan 27

~ bounded 1037 28

S BPP LTS

coL o

- counting 262

- counting, Jogspace analog of 270
Kioene 271,277, see hierachy,
arithmetial

- limited nondeterminsm 29
N B

oracle, of CaLl_ 270

- oracle, of PL 219

- PL252,254,256,200

= polynomial 1,18, 22,25, 28,29, 43,
50,56,58,63-65, 67,7, 75,81, 82,67,
115,186, 197,213, 22, 723,208,201,
232,268-275, 77, 296,207 see 7,
see ieraechy, polynomial, se PH.
see T see 37, see O

- polynomial, exponential-time anslogs
of ‘778

~ polynomiaktime _see enumeration,
of relativized PH machines, sec
hietazchy, polynormial

- probabilsti logspace sec PLH
- query, o NP 25,28

~ strong exponential 22,27,275
Hoang, T. 279

Hoene, A\ 61,193,269,206,207, 303
Hoffmamn, C. ' 264

Holmanm, A ix

Holy Grail_see Gril Holy
Holawarth, F. ix

Homan, . vi, 44

Homer,S. 26,7,265,215, 204
honeet function _se function, honest
honesty _se function, honest

= why s natural condition 32
Hoover . 205

Hoperolt, J. 27, 43,264,266
Huang, M 280,200

Homt B 274,275

Hoysh, D. 272,286

D 255,25
[





index-253_1.png
91 GEM: The Polynomial Tochnique 230

(5) We prove the genersl statement only. Let f = #gapy or some non-
detorministic polynomial-time Turing machine M. For each = € B and i,
1S5 < pal), et S(z,1) denot the set of all computation paths of / on
input (2,1 and, furthermore, for each 7 € S(z,i). defne a(x,6,7) = 1i( =
is'an accepting computation path and 1 otherwise. Then for each € B

P T atatn) - alened m)

ST STt

Detine N to b the nondeterminstic Turing machine that, on input = € 5,
behavs s fllows: ¥ nondeterministcaly gesses and simultes » path of
M on input (z,i) for all i, 1 < i < p(lz|). In the course of doing this, N'
Computes the paty ofthe numbe of v o , 1 € 1 £ P, such hat
o iput (2, rejcts When al the simulaionshave ben cmpleted, N
accopta % o itk curtnt path i snd only i this value s ven. Noe tht, for
evey 5 € B on the pah of N on iopt  eotreeponding to th s
(rn e ), th prodct (2, 1%) - a1 pgey) s 1 nd
ony N sccpe sang cht path aad that th produc s -1 1 and ool if
N rejects along that path. Thus, for every z € £*, #gapy(z) = h(z). Since
i  poynomia and M i polynomial tme-bounded, N £an be madsto o
T lymomil time. Tisimplis h  Gapb. a

Proposition 8.3 give an shernaive charactrization of PP. Let f be o
function in GapP witnesing tht 3 language L blongsto PP. Dafine g for
Al € 5 by o(a) = 2/(2) + 1. The constant. fonctions 2 an 1 ae both
FP functons, s thy are GapP funcions by part 1 o Propestion 0. So
by parts 4 d 5, g belongs to Gap. For swry = € 5 () is ivays odd
a1d 0 never equls ere, Ao, for svry = € 5 g(z) > 0 if and only f
T02)'3 0. Heen st witnases thas € PP. Ths e have proved the
Tollowing rsl.

Proposition 9.4 For cverylanguage L, L belongs to PP if and only i there
eriste a function f € GapP such that, for cery 7 € £, /() > 12 € L
and f(2) < -1 oheruise

Based on the above propositon, it i sasy to prove tha the clss PP is
closed under complementation. Take an aritrary anguage L in PP. Let  be
& GapP functon witnesing the membership of L in PP as stated in Prop-
sition 0.4. Define 1’ = —. Then /' € GapP (by part 5 of Propasiton 0.,
via the constant GapP function 9(z) = 1) and witnesses that L € PP in
the sense of Propition 0.4

Proposition 9.5 PP s closed under complementation.

The fllowing proposiion follows immediatly from part 3 of Proposi-
ton 93,

Proposition 9.6 PP is closed under plynomiak time many-one reductions.
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polynomiaktime truth-tabl reductions and under polyvomisktime constan-
round truth-able reductions.

"To show that PP i closed under intersction, it would sufie to have &
wo-vaiable polynoial ¢ having only poitve coeficentssuch that, for all
integes 1,23, 8(1,22) > O i and only if (5 > 0 and 23 > 0). Then using
as arguments (0 g the GapP represntations of Ly and L would yield &
GapP represetation of Ly ) Ly Unfortunatel, no such pelynomialexsts.
Hoever, we only need thisproperty (o had for | and 3] up to 279 for
some approprate polynomial p. The following lemma, which s the basis of
lthe rsults we prove n hi ection,acdesses this sue. Below, we asume
that (0,1} € &

Lomma 0.11_For every L € PP and cvery polymomial ., thre exist GapP
Jinctons g 5+ — N and h: 2* — N* such that,for all 2 € £, h(z) > 0
and, forall z € 5 and be (0,1),

1 xu(e) = b, e 1 - 275D < B <1, ang

2 fxule) =1 b, then 0 < S < 7ore)

Here . is the characteristic functon of L, .., for every = € 5, xu(x)
ifx €L and xu(s) = 0 otheruise

“The proof of Lemma 0.1 make uses of & ormul that approsimates the
sgn function ofitegers, . the function that maps all posiive integers to
1 and al negaive ntegers o -1

Definition 9.12 (Low-Degroe Polynomials to Approximate the Sign
PFunction) Let m and r be postve ntegers. Define.

Pat@) = -1 ] (-2 o1
1t

Qn(s) = ~Pn(2) = Pa(-) ©2)

o) = (@G o)

Bar(e) = (@n) + @Pa(a)™" o0
Pa))*

(&5 o0

Smele) = 1+ R ) ©6)

R (2) and S (2) are two auclary functions that will help us under-
stand Che PrOpertcs of Ap(2) and B, (2). Tn the nxt lemma we explore
Properties of A, (), B (2), a1d Sy (2).

Lomma 9.13
L For ol osiiv integers m and , S (2) = 243
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there s 00 i, 1§ < m, such that y, ¢ A, and so there s 0 i, 1 § <
euch that £(4) = 0. So'A(z) 0. Honce g witnessas that L € C_P in the
sense of Propostion 0.5

For the conjunctive reducibility case, suppose that & language L s re-
ducible to A vin & polynomial-ime conjunctive truth-table reduction. That
reuction maps each 7 € B o a st of strings, o(r) such that z € L if and
ouly it al the mermbers i the ls belong to A Define the function A for all

Fery
M= 3 S

whore (.., ) Is the It g(e). By parts 3 and 4 of Propositon 93,
h € GapP. Lt £ € E* and It 0(x) = (4.~ U, Suppose 2 € L. Then
here i3 20 5, 1 < § < m, such that € A, 20 there s n 4, 1 < { <
such that £(y) > 0. Since £ > 0, this implie tht A(2) = 0. Suppose 7 € L
Then thete i3 some , 1 < i < m, such that 3y € A, 20 there i some 1,
15 < m, such that F(u) > 0-Since f > O hi implics that h(z) > 0. Thus
LeG.p. a
A fangusge A s coNP-many-one reducible to B, denoted by A< B, it
ther exist. & polynonial p and a polynomiatime computsble otal func-
ton g such that for all z € 5%, 2 € A if and only if it holds that
¥y € EAI)g((2,3)) € B) 1 is well known that coNP is closed under
caNP-many-one reductions. We show blow that the closure hlds or C.P.

Theorem 910 C.P is clsed under coNP-mangyone reductins.

Proof Let A € C-P and take 10 be & GapP function witnesing,
the sense of Proposiion 9.8, that A € C.P. Suppose that & lngunge £
roducible o A via coNP-masy-one reduction. Lt b a polynonal and let.
9'be & polynomial-time computabl total function withessing tha LS55 A
S0'for every 7 € B, % ¢ L and anly i (¥ € SPOD)g((x,4) € 4] Deine
the function h for all 2 by

LCEND P ()}
=
Then 1 is in GapP by part 4 o Propaiton 9.3 Suppase € L. Then,
for ally € 704, (2,9) € A, s0, for il y € 0D, F((x,) = 0. Thus,
h(z) = 0, Suppose = € L. Then,for some y € TP, () € 4, s, fr some
& IED, 1((24)) #0. Sine f s monnegativ, this mplies hat H(z) > 0.
Thus, h witnsses tht L € C._P in th snse of Propoiton 95,

9.2 Closure Properties of PP

“The ol of this section i o prove esseal clesure properiesof PP. We irst
prove the closure of PP under inerssction. Then we prove it closure under
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Some prepacation is necessary for the proof of Theorer 9.15. Below, we
assume that (0,1) € ¥, Wo fx 2 scheme for encoding any nonempty It of
Stings ato o string, Let # be o symbal not in T and lt £ = U (#). For
ench integer & > 1, 3nd & strings i, -y, et

ke

Notethat Ay is o mapping rom () to (3" sad s polynomil-tme com-
putable and polynomin i inverible. For each & > 1, Lt Uy be the ange
G Au, ey (0] € 5 and o some g . 3x € B = Aulo, - ).
ot tht fo all posive ntegers k1 I 7 1, ech leent in U s esacly
= occurtecesof and s slement i U has exacly [~ 1 ocurtnces
of , and thus, Uy and Uy soe dioin. o, give » steing 0 € Uy, Uy ane
can compute n polynomil time th ntges & > 1 s0chthat € U and the
mique st of strins 1, .. ] suc that w = A, ., -

X guery genertor s » Tuing machine that maps sach nput sring to
« nonempty it of srnga eacoded uaiog A. A auery geeraor g i lengi.
ncreasng 1 for ll 7 € B sach lement In th 1t that 9(x) sncodes has
o lesst [ bite. For . query generator g and » nguags A, deim T3
e dhe funcion that maps each 7 € 5 0 xa(1) - Xa (0, whre 93)
)

Lot b plynomil tme machine computin a truth bl reduction
of some anguage L 10 sme lnguage 4. Then there s » poynomiatime
macine computinga ruh bl reductionof L 0 A that maes at st one
uey for ach nput T see tin, deine N o b theoracle Tring machine
it o eac nput z docsthe ellowing: N simulates M on iaput = nd then
accepts 1 M cceps and rjects axhrwise, bt Just belore accepting or
ejecing N checks whethe » quey s made durig the current sulation,
and 1 20 query s made, N makes  query aboutthe empty sring and gnores
e oruce's ansver. Siaca N makes the additionl gnored query xacty i
he case whn M docs not ke query, N computes  truh-taie rdiction
Furthemore, N s claly polynomia e bounded,makes at et one query
forench it and o ench crcl,accptsth sam angunge a5 M docs with
the orace, T particular, L(NA) = L(H%). The addion of on query may
duprive N of some propertiesabout the i M, bt this i .

"The Fllowing propotion summariesth above discusin.

Proposition .10 Ifa language L is polmomial-time trut-tabe reducible
o 0 language A, then there xists o polmomiaL.time oracle Turing machine
M computing a truthtable reduction from L to A such tha for each input
7€ 3, M makes at least one guery o ts oracl.

Al w)

Let M be a polyromiaktime oracls Thring machine computing » truth-
tabl reducton from  languago L t0 a Language A n the sense of Propo-
sition 9.1, Since M makes at lesst one query for sach input, we can spli






index-252_1.png
258 9. The Poynomial Technique

Proof (1) Let f: 5% — Z be a total function ia FP. There exits
polynomial p such that, for every 7 € I, the absolute value of £(z) i
s than 2700, Picc such a . Define M to b the nondeterministic Turing
machine that, on input 2 € T, computes f(z), guesses y € EFI7D, snd
executes one of the fllowing depending on the sign of (2):

I the case where £(2) 2 0, i th rank of  in 0% is o greater than
() then M scepts ; othervis, M goses . bit b and acepts i and
only if

T the case where f(2) <0, if therank of  in EX0%D is no geater than
/() then M rejcts ;otherwise, M guesse . bit b and sccepts = f and
onlyifb=0.

Recall tha the rank of a string y € 0% is the number of trings in £
that ae exicographicallylessthan orequal to y. The process o guesing s bit
b and accepting I and only ifthe bit s 0 generate precisely ane sccepting
path and one rejcting path esch timo it is applid. Hence the paths tht go
Ehtough this process contibute  um of 0 to the gap of M. This implies that
for overy 2 € £, #gapy(z) i precisly 1(2) if 1(2) > 0, and s precisly -1
times the absolute value of /(2) if () < 0. Thus #5pau
(2) We use the same “coniribution canceling” tochnique as in the proof of
part 1. Lat £ = fhacers be a fonction in #P, whete M i some nondeter-
ministic polynomial-timo Turing machine. Define N to be the machine that,
on input 2 € £, nondeterministially guesses and simulates a path of M on
fnput 2, and then execotes the ollowiag:

16 M on the path has accapted then ¥ on that path accepts ; otherwise,
N on that path guesses a bit b and accepts if and only b i a0

Then, fo every 2 € B, e (s) = facou(z) + Hreu(2) and fre(z)
it () 30 fgop ) = faco (=) Sinca M is poynomin ime-bounded,
N can b made o run in polyaomial ime. Thus 1 € GapP.

(3) Lt £ = fgapag ot some ondtermiiti plynomialtims Tuiog ma-
chine M. Lit g b  total funtion in FP. Defne A to b the machine tht,
on Input = € 5, compates y = g(z), guesses and simulates . path of M
on aput 4, nd scceps on the gwssd path f sod only if M accepted
on th gucked path. Then b evry 2 € B gap(a) = (5(2). e ¢
o polynomia-ime comptabie, g plynomial length bouaded, and 50 N
can be made o T i polynomia . Thus h € GapP.

() We prove the geneal satement nly: Lt 1 = fgapay o some nonde-
erminise plynomialtime Turog machan M. Defto A 1o be the node-
ermiaisic mochine that, oninput 7 € I, s 1 € {0,1}D, gussa
and simalates  pth of M on input (), and then scrpts on i3 curtent
A M ha acuptad o Uhat path and et on s curtet path the-
Wise. Then o cvry = € £ #gap(2) = A(5). Siae o plynonin and
s polynomial time bounded, N can be mad ta ru In polynomia time.
Thus h € Gaph.
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One way of understanding the computational feibilty nherent in a com-
plxity clas,C, i o determine the closure propertos the cass posssses and
lacks. Under which operations is the class close: complementation? union”
intersction? symmetric diffrence? And under whichreucibiites s the lass
closed? That i, for class Cy we may naturaly ask: For which rductions <,
docs it hold that R,(€) € C7 Answoring such a question can give insight nov
justinto the computational fxiblty of & class but aso nto the dentiy of
the clss T C i closed? under some operaton and D is o, then C .
‘And, more typically in the world of complesit, if C is closed under somo
operstion and D has to date defested ll effrts to prove i close under that
operation, then wo may take this as one piece of evidence that may suggest
that the classs may difer

“The focus of this chapter s on proving closure propertis of PP (and
related classe) vin consruction oflow-degree multivariae polynomial of a
specil ind of counting function, the gap functions. Gap funcions aze thoso
that count the diffrence between the urmber of accepting and reecing com.
putation paths of nondeterministic Tuing machines. The breakthrough on
these dificul problerns came from  novel polynomial construction techrique
for approximating the gn function. Cormbining this techniqe with gap func.
tons gives us elatively essy proofs of the propetie.

“This chapte i organized as fllows. In Sect. 0.1 we itrodice GapP and.
show ts closure properties. Wo demonstrat the usefulaes of GapP functions
Ly presenting some simpl closure propertis of PP and C._P. In Set. 9.2 we
introduce an spprosimation formula forthe sign fnction and use it to prove
closure propertis of PP. In particula, we prove that PP is cosed under
intessetion and under polynomialtimo truth-table reductions. In Sect. 0.3
we ntroduce GapL, the logaithmic space version of GapP, and we show
that the probabilsic logspace bierarchy colapses. In Sect. 9.4 we discuss an
importaat open issu.
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The inpots to the nonlef gates are determined as fllows:

 The inputs of the output. gate ar the gatescorresponding to {611l |11 €
D)

o Lot 1 €7 k=1, Let g be  gate corresponding to rfu, .. 3] for some
iy ye € DM, The inputs of g are {brealins - - voasl | s €
Bhisiny

o Let g be a gate corresponding (o i, ..., for some y1, - yx €
DM, The inputs of g are {1l .- vho 8|1 < pu(n)))

Lt Wi = s, .. s bo th smallet 1 strings of length (k-+1)u(r).

Letur, ., un € D) and 1< €< p(u(n). Lat g bo the input gate cor.

responding 10 dualn, - gkt Lt = = (097,14, . yh,0). The label

of g s detormined o folows:

o I forsome £, 1 <1< ni+!

16 forsome £, 1 <1< k¥, 2 = Ou, then g islabeled .

16 for some € 5~ W it holdsthat = 1, then i assigned 1 i € A,
and is assigned 0 othervise.

« 1 for some s € 5 W, i holdsthat = = 0w, then s assigned 01 € A,
and is assigned 1 othervis.

16 is the empty sting, 9 is ssgned 0.

Then work from the Input lovl o eliminate ll subciruits whoss output is
 constant rogardless of the values of w1 . uyess. This i C. The creuit
Cu clarly has depth k +1.

By ssumption, for every BC {1y, - o),

L, then g s labeld .

e L U B) = e K U B)

Sine
LTy R T—

and

e K U B) = Culxalm) - xalien))

o compts K. For all bt itly many > o, b (6.12) and (819)
hold. So, for al but iniely many n, the size of C s smallr than 27 "

and ach depth-1 subciruit of Gy hs favin smalle than 1" Thus, by
Theorem 822, C, cannot compte hk#1. So, there xists an assignment o

Wi, tyhor With respoct to which C, disagroes with M. This implios
that there s asut ¥ (.., ) such that

Calr(n) - xv(wnaen)) =1 = By () - x ()
This is equivalet to

0 KB = 0 g Ly,
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Lt & = (6, ). Suppose that we ar st the begiming of the stage . Let
Ay (espectivly, 4, be the set of all trings put in A (respectivel, 4) prior
tostage s. It hods that Aq 1) A

the ollowing three conditions:

n>to (&)
(k4 e <20, g 1)
< @ (19

Since p i o polynomil and k is fxed ot stage 5, chere exists an nteger o
such that for all n > o n satisesal the three conditions. We claim tht for
Some n 3 n there exists & partition (Bo, B) of (5°)<" such that Bo 2 Ao,
B2 4, snd
0 € Lu(B) = 0" ¢ Ki(B).

We prove the claim by way of contradiction. Assume that the claim doos
ot old, i, for all n > o and al patitons (B, By) of (5<% such that
Bo2 g and By 2 Ay, it holds that

0 € Lin(B) += 0" € Ki(B). (s10)
For each n > 1, It (n) denote the smalet integer  such that 1> £,_, + 1
and 2 > . For each n > 1, the cireut G, s constructed from the formula
for K, on'input 0%, Let do b the formla

2€Lems Qi wn € M) Qun: ya € D)
@uuz:z e (L AU=DD Uyt v, v ) € T0 4],

where forevery 1 <1< k-+1,@s = 31f Lis 0dd and @y = ¥ f it even. For
each 1,1 < < b, and each yn, - e € PO, et s i) deote
the formla.

(@reaties s € SO .- (Qu sy € AU
@t 1SS RGN O ) € K@ AL
For cach t, 1 < ¢ < p(u(n), and exch a, oy € KON, lt
Bt - 1trt] denote the formula

LD g, ) € A0 A

To construct C, for each of the ¢'s deined in the sbove, introduce  gate

cortesponding o . The type of the gate i determined us fllows

= The node corresponding to g is the output gate, The output gate s an ¥
gete.

« Each node corresponding 10 a 4., formla i an input gate.

 Let 1 < < k. Each node corresponding to a 6 formula is an A gate if
P+ Ui oven and an V gate i 4 11 odd.
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The random rsticton technque was nvented independertly by Furs,
Soxe, and Sipser [FSSS4] and by Ajtal [AtS3). Both groups proved
Thaorom 5.1. The exponentialize lower bound for depi2 cireuits, men-
toned in the proofof Theorem 8.1, i due to Lupanov [Lup].

"An exponentialsize lower bound for priy as well a5 an aracle separation
of PSPACE from PH was first proved by Yao [YacS5| These o reslis were
improvec by Histad (HAsS7 14589, Our presenation in Soct. 8.2 isbased on
the approach of Histad.

“The notion of random oracles was pioneere n the study by Bennett
and Gill [BGS1] They showed that P NP with probabity 1. Proposi
tions 17 and 813 are rom their paper. The probabily-one sparation
of PSPACE from PH is due to Cai (Cas9]. Babad (BabsT] preseta a sim-
pler proof built on Histad's resul. Our presenation s based on Babal's
proof [BabS7]. Lemm 816 i due to Ajtai and Ben-Or [ABOSM]

“The function A, ofSect. .4 ad the biase retriction seheme presented n
Sect, 8.4 are both e to Sipser (SpS3]. Usin thes techniques, Siser proves
 polyomia-size lower bound for constant-depth ciruit computing Ht, He
Conjctured that 1t 1 possiie o strengthen the resul 0 superpolynamial.
ize. Yao [Y8085] proves an exponertia-sise lower bound, but he paper did
ot contain & proof, Based on ths lover bound, Yao constructs an oracle
‘making PH infite. Histad providesa complte proof of Y80'slwer bound
Actualy, Histad's rosult a7 sgniicancly improves upon Yao's esul.
Leomma5.21 i taken from Histad' thesis [His1], Ou presentationis based
on the funcion proposed by Sipsr. This function gves  siae lower bound
eler than that of Histad [Hiss7).

“The random resticion technique has been widely use s  tol fr prov-
g lower bounds and construcing oracle separating complxiy clases, For
example, Ko (K89 constructs, for each k 2 1, an orace that makes the
polynorial hierachy separate up to exacty 5 while making PSPACE dif.
e rom (or cqual o) the polymoial hierarchy. Shew and Long SLO4]
show that there exists an orace relaive to which, or al % > 2, A7 ¢ 5 and
87 A, They lso rove tht the extended low hierazchy i indeed infite.
Bruschi {Brud2] consructs, fo evry & 2 1, an oracl rltive to which there
et et in 57 that i immune to A

A pereptron [MPSS] is an AND.OR st with a threshold gate at the
top. Improving vpon Histad's switching lemma, Green [Gredi| proves an
exponentil lower bound on the ie of constan-depth perceptzons comput-
ing parity. Based on the lower bownd ho proves that there s & rlativized
world in which OP & PP, Berg and Ulfbrg [BUS) construct functions
thatare computable by linesrsize, depthk boolean iruit and tha for no
< logn/(Sloglogn) can be computed by poynomialsiae, depth(k — 1)
perceptrons. Bused on the lower bond they show that there is an oracle A
elativeto which, for all k > 2, 534 ¢ PPV
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whare By = Ay UY. Let 7 bo the smallst integer such that fo ol
e € PO and 1< €< o), 50, k0] < v and
By = (%5 Z By Then (Bo,By) s an extenson of (Ao, Av), which con-
radics e aseumption that <quition .14 blds fo evey xtenson. This
proves urcam. So, har i an extenson (B, By) of (Ao, A1) such that s
o 814 docs ot hold. Pick such an extension. St £, be the smalet intager
s that 7 2 o1 and forall - tu € P and 1,15 £ < pi(n),
T e ) = 7. Wo il st A o By s st o o (32127 B
Then the property Ly, # Ku(A) will be preerved in the future staes. Thia
proves the theran. a

Corollary 8.7 There i a relatvied worid in which PSPACE # PH and
PH is ininit.

8.5 OPEN ISSUE: Is the Polynomial Hierarchy Infinite
with Probability One?

Does  “probabilty-one” separation hold for infiiteness of the polynomial
bierachy? Proving such . reult seems out f reach a long a5 we use the
functlon fanly (b }um1. In order to apply the method in Sect. 83, the
fonction family F must posses the folowing property:

Any dotermiistic crcut computing F with bounded error can be
convered, at the cost of constant increase in depth a0d palynomial
increase in size, to » probabilstic circuit computing  with bounded
ertor probability

Ou function family (S} seoms o lack this property. Can we nd an-
other family with thi propery? The queston is subtle. Functions with the
property aze mor or les symmetri, i the sense tha the outcome s heavly
dependent on the nombe of 1 in theinput bits. In general, symmetric func-
lons, such o the parity functon, re “provably” harder than constant-dopth,
polymomial-ize circults. So, a fumiy endowed with the property seemingly
cannot be wsed to separats the polynonial hirarchy.

8.6 Bibliographic Notes

Baker, Gil, and Solovay (BGSTS) introduced the concept of oracl separa-
tions. They construct an oracle rlatve to which P = NP and  anoth

oracle relative to which P # NP. The meaning snd interpretation of ora-
cle—also known s relativization —resls has been the topi of ntereting
discusions [Hars, 100 ICRRO0HCC+92,Forg4. Though much is known

‘Sbout rlativizaton theory (see [Verds), many open problens rmain (e,
(HRZ95).
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For every input &, the number of computation paths of N on input
is exacly 22004, and the number o ts accepting computation paths s
2paceu(z) + () — faceu(x) = dre(x))
aces () — el (z) + 240,
Sofor every 2 € B,z € L i and only i face(z) > 2700, Lot A =
{Cevs) 1] = p(D)+ AN on input z long path y accept). Then,fo every
2,2 € L if and only if the number of y € 207)° such that (z,u) € A s at
st 27040, Since the function £(z) = 20 i polynomisk-time computable,
thi implies that L  PP. This proves the propositon ]
The above characteization simplifies the process of proving containment.
of languages in PP we now have only to construct & GapP function that
is nonnegative on all mermbers nd negaive on ll nonmernbers. It s thus
‘mesningful to know wht unctions belong to GapP.

Proposition 0.3

1. Buery total mapping in FP from 5 10 % is a member of GapP.
2. Buery functon in #P s o member of GapP.
3. Let ] € GapP and et total function g 5 — 5* be a member of FP.
Leth: T~ 2 be defned for allz € 2 by
i) = Flo(2).
Then h € GagP.
4. Let  and g be GagP functions, Let h: 5 — Z be defned for allz € *
b
) = 1) + 5(2),
Then h € GapP.
In general, for cach polmomial p and cach 1 € GapP, leth: 5* —+ Z be
defined for all z € 57 by

Me)= T S
e
5. Let f and g be GapP functions. Let h: B — 2 be dfined for all € 5
[

h) = flolote).
Then h € GapP.

In'general, for cach polynomial p and each § € GapP, leth: 5+ 7 be
defind for all z € B by

LEENS | QTN

=

where th symbol  appearing as the second argument on the pairing is @
binary encoding of i, Then h € GapP.
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9.1 GEM: The Polynomial Technique

A GapP function counts the difience between the numbe of accepting and
jecting computation paths of a nondeterministic Turing machine.

Definition 0.1 Let M e o halting nondeterministic Turing machine, ..,
‘one that halts o all nputs and along all computation pths. The gop function
of M, denoted by #aspu, it @ mapping from 5 to % defined for o £ € 5
b

Haspa(z) = Hacen () — Hrei ).

GapP is the collction of ll ap functions o polynomial time-bounded non-
determiristic Turing machines.

GopP ofers the folowing new chazacterization o PP.

Proposttion 0.2 Let L be alanguage. L belongs to PP if and only if here
erists some total unction | € GapP such that, for every % € £+, % € L §f
and only i f(z) 2 0.

Proof Lt L be an abitrary anguage. Suppose that L i in PP. So there
exist  polymomial p,language A € P, and a tota function / € FP such that,
forevery z € £+ 2 € L if and only f [{y 15 = P2 A (2.9) € A} > 1(2)
Deine M o be the nondeterministic Turing machine that, on input = & 5*,
ueses b€ (0.1) and y € TA, and accepes  fether (b~ 0 nd (5,3) €
) or (b 1 and the ank of yin EH5Di.e, (x| + € EPED Ay Sy S}
‘at mest 27120 — () and reoctsotherwise. The machine M can be mad to
run i plynonal time. For every 7 € , M on input 2 has exacty 24741
computation paths and #aces(2) is cqual to

20D~ f(a) +[}{y € 20| (x,9) € A\

This i t lesst 202D if 2 € L s i e than 2705) otherwise, Snce 200 is
exactly halfof 220141, for every x € T, 2 € L if and only if #gap (2) > 0

‘Conversely, suppose that I is  language and / is  GapP fncion such.
that, for every 7 € 5,z € L if and only f £(z) 0. Let M be  nonde-
terministc Turing machine such that = #gapy, and le p be a polynor
bounding the runtime of M. Deine Vo be the nondeterministic Tring ma-
chine that, on input £ € =, operate as follows: ¥ simulates M on input 2
while counting n » variabl C the mmber of nondetermiistic moves that M
makes long the simulated path. When M halts, N guesses » binary sring
= of ength p(1) — C using exacely lngth p([z]) O bits and slso guesses
singl bi 4. Then N accepts if and only if cither

= 2 €0° and the simulation path was accepting, or
©rE0md
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Define

Vo = (041745 | (32 € (E))(() = is not & wellformed formla
and M (2) sccepts or () = is & wellformed formula froe
variables and cither (bl) MY (s) acepts and = ¢ SAT or
(62) M (2) rejcts and =  SAT; or (¢) 2 s & wollformed
formula varibles 2, ... and It is ot the case tha: M- (2)
accopts if nd only if

(M (eley = True]) ccepts v M (s[z, = False]) acoepts))},

where, as doined earir i this chapter, 3[.| denotes 2 with
the ndicated varibles assigned as noted.

Wi = (82| 2 € LIVEY)
vewUn

Notethat V & NP Iformaly, V functions s ollows. The 041" 45" srngs
' deermine whethr given et of sings ~work" s spvse oaces that (o0
) ntance of gt st Tcst ) allow M tocorecly accept SAT, O, more
cxntly, it checs i  given st ol o st SAT correcty Of cours
e foct tht S is o sparse Turng-had s for NP ensues that.thore
Some sich et 5 that do simlais SAT corely n this sene, howeee, it
isposible tht st S other thn prefnes of S may also happen t st
ST comectly i this sonse. Tho L pt of V' takes .36 of sirings that
appens o imlate SAT s jut descibed, ad ses thrn, . concer with
M: o simulae SAT.

We,ow give o NP agorithm that accpts L. T priclas, wo g
an NPV Sorth. Suppose the input to our sgarichm i he sing . Note
Ut thelongest pasibl ey 1 SAT that. Ny will make on qeris N, asks
to its oracle during the run of N/™"")(y) is pe(pe([y)). Note also that M,
on input oflngth p(pu)). ke i orack only qestons of length i
st atppuly). A nlly, ot tht hee i omespacsecraclel such
tha LMty ZSATEr0nM o cxample, the ek 18 such
on orale,

Stop 1 Nondetermiitically gues et ' € (55 0¥ stisying
IST] < porGelpel)). 1 CHIAGAH A4S € V then reect. Onher:
wis, 000 tep 2.

Stop 2 Simulte the action of () cxcept ha,cnh tme Ny (y) s o
uery o o L(NST) orale, ek instend sh ey 1S to V.

"Thatcomplotes the deseription of th lgorith. Not that th agoithn
e havo givenis ealy 2 algorithm. Frthermore, ot that th lgorithn
indoed accepta L. This i siaply bcaue St 1 obtain vl s of rngs S
hat cither eSS o that. fn the scton of machine M, function
ust s el . SS9 1y sl SAT. Toat 1, e obain et of
Saings ' such that
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each occurtence of ¥ in the formula by an A and each occurrenco of 3 in
he formula by an v. The cicuit H has size 14+ m + .+ mb and
thi is e than 73 Tn ordet to’prove the mpossbiliy resut, can we
(ut the distribution R, we uced for the parity case? Wo doub that that is
possible. Why? Basicaly, R, is designed to destroy all the depth-2 circits
nd 50, with high probabiicy, a random resricion under R, will ot only
weaken the superpolynomial sise depth-(k ~ 1) circuis but also b, Thus,
weintroduce a new kind of probabiliy distibution for restritions, i which
the probabilty of assigning O can be differet from that of assigaing 1

Definition 8.20 Let = be a set of n sariable with o fized enumeration
2w 0. Lotr, 1S 7 S, be an integer. Let B = (B, ... B} be
partition of = into nanempty sets. Let© = (s, .. 2.} be o et of variables
“ach varying over the values 0, 1, and . Let , 0 <'g < 1, b  real namber.
- B i e dtbton of rsicians p ovr U © tht ae hosen o
o) For cachi, 1 <1< r, 5=
1-g
b) Then for cach i, 1 < i < r, and each 3, € By pls;) = pls) with
probabilty g and 1 wth probabilty 1 - .
2. Por a rstriction p € Ry, o(p) i therstriction o determined from p as
Jollows: For each s, 1 1< v, and each z, € By,
«'if pla;) =+ and for some k > 3 it holds that 4 € By and plzs)
then ofz)) = 1;

« otheruise, o(z,)
3. By is defined sy ezcept that the ol of 0 and \ are interchanged.
4 Por o resricton p & R, o) i defined simslrty ezcept tha the oles

of 0 and 1 ae intercharigd.

Here the sets By, B, correspond to the blocks of input bits that
are fd to the dopth-1 subeircuits of A, Note that for all p € Ry and i,
1< <, the resriction product pg(p) asigns  to at most one vriable in
B, and if the product assigns + t exactly one variabe, then all the other

variables in B, ace asigned 1. The same property holds or g with 0 in
place of 1

“The fllowinglemma paralll Lemima 8.4 The ntereste reader may rfer
0 therefrences we provide at the end ofthe chapter fo its proot.

with probabilty g and O with probabiiy

Tomma 8.21 et > 1, lt s > 1, and et g be sch that 0 < < 1. Lt
G b an A cict (rspictielyan VoA ciret) wih ot fa-in at most
& For o random esricion p chosen from Ry (respectivelt, Fom ),
e oty that o) can b rewriien o an V- (respecively, an Ay
i) ofbtto fne es ha & ot st 1o, here

g dat
am i< <o
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vized polymommial hisrarchy i ssentilly a calection of constant-depth
crcuit. So, If we can prove that for each k > 2 ther xists  serios of
functions computablo by dopth-k, polynomia-size cicuits but not by depth-
(&'~ 1), superpelynomiaksize crcuits with smallfo-in depth-1 subelrcis,
then by using 8 method simila to that in the proof of Theorem 811, we
can construct for sach k > 2 an oracle A®) separating I from T, In
the oracle construction for Theotem 8.1 we bascaly kil each PH machine
by identifying a lacge enough length and then puttng some strings of that
ength in the oracl as well as putting some trings of that langth outsid the
oracl. The procedure can be doto in such a way that the lengths that e
Chosen aze widely spaced. Then we ca intarlenve separation procedurss of
lllowels to constut an oracl that sepaeates all the lavels of the Nerarchy,
heteby making the hirarchy fninite.
The ellowing are the magic function that we sefo circuit Lower bounds,

Definition 8.10 Let k > 2 and m > 1. Define b 1o be the folowing.
function of m variabes 3, .. Epi.

s 1<h<mGhi1shsm
@i TE e = 1), b
where Qu = Vi i dd and 3 oteruio and i .. i) denees the ique

umber .1 <6 < m#, whase madic representation is equal o iy - .
(Hers we'use the mumbers 1, insead of O, -, ~1.)

It is obvious that for each & > 2, and each m > 1, a clrcuit Ak, for
computing hl, can bo constructad i  straightforward manner by teplacing
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L1 GEM: There Are No Sparse NP-Compleo Ses Unless P=NP 0

and the certficae proves that 2 € SAT. Given that S s spars, it s not
hard o see that S is sl sparae. Fnally, ' s NP-hard because, i lght of
the fact that SAT<E,S v polynomial-tme roduction , it s not ard to see
that SAT<2, " via the reduction £/(z) = 01 #/(z). )

We now turn o presenting the ekt st technique. We do 50 via proving.
that if some spase st Is NP-complete under boundd-ruth.table reductions
then P~ NP,

Theorem 1.10_If there is o sparse se then P = NP that is <J,-hard for
NP, then P = NP,

In the rest of the sction, we prove Theotem 1.10.

1122 The Left Set and tpuas. Let L be sn asbiteary member of NP.
Thero exist o polynomial p and  language in A € P such that, for every
zew

zelL e (Bue D)z u) € Al

For each 7 € B* and w & I, call w o uitness for = € L with respect to A
and it [ul = p(el) and (z, ) € A. Defin the et set with respect to A and
. denoted by LefA,p,to be

() |z €5 Aye U A Gue IDu 2 y A (s 0) € A},

. LeftA,p) s the set of sl (z,) uch that y belongs to SX1%) and Is *to
the et of some witnes for z € L with respet to A and p. Fo each 7 € I
defne

e

ax{y € B0 (z,5) € A}

6y € S| (5,3) € ) is empy, then () s undefined, Tn oher
Words, tpun(z) I the Jnicographic masimum, of the wiaascs o = € L
Vi rspac to A s p. Clndly o ey 2 € B,

2EL =5 (s s defined,
ond
zeL e @y e D)) € LAl
Furhermore, fo every 7 € 5, the s
(e T (50) € Leld )

qual {y € BP0V [ 070D < y € wip(2) i 2 € L and cquals  oth
(s Fig. 1.1). More precisely,

(¥ € )y € BD)(2,9) € LeflA,p] = ¥ € wma(z)}

Al

(Y2 € ) € BD((e,) € LetlAp) A <)
= (sv) € Lehld,pl}

0y
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A7 20,72,100,271-273, 286, s <E_ 306, see reduction, polynormia-
“higarchy, polynomnial, see ek, ‘ime conjunctve Turing
Af complete <2, 26,187,200, 305, se reduc-
117 20,25,28,271-273, see hioraschy,  ton, polynommial time conjunctive
olynomial teuthtable
me m32u - closure o C..P downward under
= 10-21,25,26, 73,108, 271273, see closurs, of C_P downward under
e hirarchy, polynomial e set, St
F complete - closure of coNP downvard under
£1¢ 213 910,28 e closur, of coNP dowrward under
of 120,272,208, m0m008, <h
o Hirarchy, polynomial, sec set, <% 308, see reduction, polynomial-
& complee e disjunctive Turing

~ Cltone ropertes s closure,of Sy 20,20,068,005, 307 s rduc-

9 “Hon, polymomial e diguncive

i% S a

E 7, see reduction, - b P downward under
o e S S, 3 GoF dovmend s
Srandomiand , see reduction, <k

St [0 200 o i ot NP doumward ander
BT e reion, o N Bt s

NP many-one
oy

<A 020,250

2, 208,200,905, Sh 10, 11,245,275, 306, se <,

Edhrers i e,
o, 15 o, plmori e 3 rduction plyiois
Turing. > bounded-truth-table

clsure of . downward under see Sles 306,307, sce reduction,

clonure,of C.P downwacd der <5 poynomialtme locally postive

~ Clowre of oG dowmward under | Turing
S closur, of O downward < 1:6,8,0,26,00,187, 104,215,
nder <5 2571280,27,305,sc rduction.

- closwre of @P downword under see polynomiaktime many.one
st of P downward undr <~ Chosur of PP downward undee sce

<y 1611,26,265,306. 205,506 clsur,of PP dowrveard e <5
e roducion palynomialme  — cloure of SFy dowiacd undes 6e
bovndedtruch e Clasur,of SF, dovnward undee <5y

- chcure of P downward under_see — closur of th conext e anguagts
Clure,of P dowaward under <5, downard under e cosre of he

~ Clrure of PP cownward tnder e contet e Iangunges dowmard
e, of PP doaard wnder <G under <E.
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5.4 Oracks That Make the Polynomil Hirarchy Iniite 225
Thoorem 8.22 Ltk > 2. For ll butfnitely many m, and for every depth
& cineit C, € # b, i C satishes th follouing tuo conditions:

1 sze() <2
2. Bach depth-1 subcircuit of C is of fan-in ot most m

Proof The prof is by fnduction o k. or the base cas, It = 2. Let
m 22, Suppase C i 2 dep2 ciruit saifying properis 1 snd 2 of the
heccem. Then /5 < m. %0 thee i sesticion o that forces C 0 3
Consant while Kecping K, nonconstan. Thi implic that C # M. This,
e caim bolds for = 2
For th nducion step, e k 2 3 and suppose that the claim llds
for ol K, 2 < K < k Lot m 5 1 be fied and let C be o dopthk
cuiapiying properie | and 2 f the theorm. The ciru 7% i bl
o by gl e s G i i For sy
§ 7 i) and e Ty = {1, m5) Lt Ar A be an
Cnameriion of ol o v o . s o Dy Db
“oumeration of l depth-2 ubciruits of H, Note for evey > 2 sad ev-
e § € I that Ay s an Aciocuit i b odd. and an Vecscit i i even,
For each 5 € I, It T() be the et of sl i € 1, such that A, is 2 s
cirui of . Then, for every 3 € I, T) = {m() ~ 1) +1, . mg)
TGN = m.For e € 1y e By e the st of sl varisle appesing in
Ay sad B (B By}, Lot g = and p be 2 andom restriction

chosen under disribution Rl ifkis odd and Ry if ks even.

Fact 8.23 1 m is suiciently looe, with prbabity greter than §, the
Jllwing oids for il € 1y Edher

1 (s = + and Adlpa(p) = 7 Jor some unigue sariable z € B, or
2 s € (0,1} and Adlpalp) = p(s)

Proof of Eact 8.23 By symmetry we have only to comider the case
i which & is 0dd. Ik i 0dd, then Apr - Ama-s 18 At 0d the
irbution t be ed s Ry, Lt i € 1, Suppose p(s) = »- Then, exacly
one of the following is true: Ai[pg(p) = 1 and for some 21 € B, Ai[pg(p) =
1. The ormer hods wit probabiy (L~ 9141 3 the aer hold with
‘probability 1-(1- )/ #l. Next suppose (s, Then either A:[pg(p) = 1
ox Alfpalp) = 0. Snee Ay issn A s and pls) = O, A,[pa(p)
s ony I every vaiable in By b aigned 1. This occurs it probability
(1— )4, 50 A, [pg(p) = O with probability 1~ (1 - g)! &,

s ciahe propety Los propesy  hldawith probabity 1 (1
Since ||1]| = m*~!, the probability that for every i € I, one of the two.
condions hld s

1-@- gy
1= (1= maym)






index-348_1.png
F

et

ousz)

zacsy

fzaatt)
zes]

anss)
{imos)
@)

References

. Vesha._On certain polycemiatme truh-table sedciiis of
compinte e o sparse s, SIAM Joural on Compuing, 1) 11
5,083

P-Voung. How reductionsto sprsesets collapee the plynomialime
hirsschy: & poimer. SIGACT News, 25, 1032 Fart 1 (45, poges
0717 Part T G4, pages 83-84),and Corrgendum to Part (74,
o 00

5" Zachos. Robustnes of probabiitic complexity cases ndar def-
itional perturbations. iformation and Computation, (3143154,
oea

S Zachon. Probabiisti quantfers and garcs. Journal of Computer
ad Sptem Sciences, 36 33-151, 1085

V. Zank, 4P completenes via many-on reductions. ternationsl
Joural of Founations of Gomputr Seence, 201)/76-52, 1001

5" Tachon and M. Furer. Probabite uantfirs v ditrstulsdver.
i T Prceeings of the T Gonrence an Foundations o Sef
‘ears Tuchnatoy . Thoretial Computer Seince, pages H1-126
Springr-Verng Lecture Notes i Computer Science 4287, Decoer
it

5. Zachos and H. Hellr, A decisive chacatesization o BPP. Ifor-
mation and Contrl, 9(1-3)125-135, 1986

Compuiaion pages 210-225. Sringer-Velag Leture Notes n Gomn.
puter Svence 4,107,





index-234_1.png
20 5. The Random Retriction Tochique

Ta(Ha(e,)
(@ OWON)OEONOW O - ®(nBYa-s B1n)
nlD)B W D

By sestranging terms, we have

7a(2) = Ta(Ha(2,) O O 1 ®s)
By combiing equations 8.5 and 8, for all € {0,1}" and y € (0,1},

CalHu(2,0)) = Tn(Hnz,0) = Fa(a,3) = 7a(0). )
Define C, to be  probabilistic ircuit hat computes Fy(z,) iven 2 s the
nput and  s¢ the random bite For all 7,3 € {0,1)", there exist exactly

o'y € (0,1)"" such that 2 = Hy(z,3). Then, by equaton 7, fo every
€ (0,1)", the probabilty that Gi(z) # 7a(x) i precisely the propartion
o 2 € (0,1} such that Ca(e) # 7a(e). So, the errr probatility of C, s .
most §— . As the excusiv-ar of thre bita can b computed by a depth-2,
San' Sty we can deigh G 80 that s doph is -+ 4 and 1 size s
st O(s(n) + ).

W will comvert G4 o & dterministi circuit, Leta be an ineger greater
han o equal o . ince c can be abitrary small, we may assume that
0< < 4,502 2 Lot DL b thecircuit tha computes the A of [Salogrn]
copic of C, where cach copy has fa own random bit. Since G computes
o ith erro prababiliy at most §—¢ . the Flloing condicions
hold:

1. For every 2 € (0.1)% i 1a(2

i AT

2 For every 2 € (0.1)% £ 7a(0
most [3(1 ! Seber S ta”s

3. depth(D?) = d+5 and size(DE") = O((s(m) + ) leg).

Next let D be the circuit that computes the v of % copies of DY,
whero o attach the copios indopendent random bits. Then the flloving
condiions hold:

1. For ovry 5 € (0,11, i 7(e) = 1, the nch input b 0 he utput
e (whih is an Y gat) of DE)(2) becorcs 0 with probability st most
1047, o DP(2) =0 with probabily st mos (1 - n-Sa03)
(=m0 This s at most 2 for > 2.

2. For every z € {0,1)", if #a() = 0, then each input bit to the output gate.
o D9 (2)bucomes 1 wiah probiity, s most -7, s0 D (e) = 0
it probabiy o eak 1 noom- = 1

5. dept(DR) = d 7 and (D) = O () + g,

 thn DEY(e) = with probubiy ¢

), then DA”(z) = 1 with probability at
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This implis
(Ge:0< e 1/2)@ 2 WA = KD >+l

The condition W(4) = Ka(A) implies that fo every n > 1, 07 € W(4) &=
V€K, So 1A [WOA) = (A 21— hen for every > 1,
WCA| T WA) 4o 0 € K,(A))) 5§ + . Thus, the stterent of the
Conllay s Q" Coralary 818

"Now the £t of the proot i seminscant of tht of Theorr 811

e, the contary, that PHA < PSPACEA with probablty 1; that:
15, ) = 0. By Coroley 818, there cxist som fel ¢ > 0 and s nteger
S that for vy 03 1

HAIO € W(A) o= 0 € KA > § 46

Sclct such € and s. Lot n 2 1 and let D = (4] 0% € W(A) ems 0" €
K,(A)- Lot @ b the et of sl strngs queied by K, on input 0. Note that
ot cvry angung A whother 0° € K,(A) depends caly on how A partitons
@ and whether 0° € W(A) and dopends only on how A paritons 3. Wo
daim that £ € Q. To see why, ssume I ¢ Q. Divide I ito two parts,
51 =%\ @ and 5, = % Q. By ssumptin, 5, is nonempy. Snce for
every A, 0° € W(A) if and only ifthe umbe of slements in A () 5 is odd,
o every H C Sy, the mumber of H'C S, uch that H U € Discqual to
the number of H' C S, such that H U H ¢ D. This implies that (D) = .,
a contradicton. S, 51 € Q.

Lot m = 21 and It ¥ = (0y]y € Z). Then [IV]] = m. For cach
H €Q -V, count for how many H' € V does it hold that H U H' € D,
Since (D) >} + ¢, by the Pigeonhole Principl thee s some < @ V.
auch tha fo more than § + e of H' C V, H ) H' € D. Pick such an H.

‘Construck Co from th ittt reprssntin the computation of K, on 0"
by aigning vlucs o some input vaiables s follows:

o For each w & H, asign 1 to the input w and 0 o the input .
or cach € (G V) H, assign 0 to the input 1 and 1 10 the input 7.
Then the proportion of the inputs of length m for which Cry computes 7,
rectly is more than 4 + ¢. This family, by Lemma 8.16, can be converted
0. family of depth.(k-+7), superpolynomil iz circits that corectly com-
putes the parity function. However, this i imposeble by Theorem 5.3 Thus,
W(C) = 1. This proves the thorom.

8.4 Oracles That Make the Polynomial Hierarchy
Infinite

In this section our major concern s whether there s an oacle relative to
which the polynomial Hierarchy i infinite. Ou viewpoint has becn that the
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Next lt DL b the cirit that computes the A of  copes of the com-

plement of DS, where the copies are given independent random bits, Then
the folowing conditions hold:

1. Forevry 2 € (0,11, i ra(e) = 1, then DE(5) = 1 with probabity at
et (1~ )" 2 12" This s more than 12 for >3

2 For vy 2 € (0,11, i 7(2) =0, then DEV(2) = 1 with pobabity st
most (120 Thi s s than 27 o 2 2

3 deph(D89) = .47 and sie(DEY) = O3+ ((s) + ) o),

Thus, DI compute 7, with probabity greste than 1~ 2", For each

€ (0,1)%, Lt R(z) be the set of ll assignments to the random bits that

makie DY ter on input 7. Since DS makes an eror with probabilty less
than 277,

I U R@l<ze

e

Ths mples that thee i a asgament o the random it ot belnging to
R for any 3 € {0.1)7 Lt b such n ssignment. Dioe 1o b the
deteminiticcirui consruced rom DAY by asegning o the random bis.
Then B correclycomputes 7a(z) o al 2 € (0,11, depth(Ey) = 447, and
size(B2) = O 1(s(n) + nylgn) = Ow= (s + 1) = O 2a(n) +
53 deied. T provs he e a

Now we ae rady to prove Theorem 8.15. Defie W{(4) t be th tet
angunge we considered in Sxc. 83 tht s, W/(4) s the se of al 0 such
(0,17 (1 Al s odd. Recall that e’ hve consrucid an enumar-
Gon KK, . of reltivaad prdicates spaiying alteratig quanicn
ons such tht, o every L and A, L € PHA i and oy 1 o some 2 1 1.
holds that L = Ko(A)

“The fllwing proposition, hich we present. ithout» proof,

Proposition 8.17 If there erists ¢ > 0 such that, for cvery 5 2 1,
W(AI W(A) # K,(A) > <, then W(©)

We obtain the fllowing corslary from Propositon 8.17

Corollary 8.18 I u(C) = 0, then there exist ¢ > 0 and « > 1 such that
Jor everyn 2 1, W({A]0* € W(A) = 0" € Ku(A)}) > } + ¢

Then by taking the

el

Proof of Corollary 8.18  Suppose that 4(C)
contrapositive of Propositon .17, we have

(v > 0)@s 2 1) (4] W(A) # KA < o)
This is equivalont to

(V50 < <1/2) @02 DA W) = K () 2 1)
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fo some constant €,0.< ¢ < §. Since ¢~ (VAo i _ g

o = o(e™ ),

Since [l = 3, the probabiliy that cquation 89 docs not hold fo some
jehis
almi-3e=VT)

Note that

R S

)

for e ¢ 0. o, the probabily hat cquatin 8 dos ot hold for some
seh .
o(em V),
Thus, th probabilty n question s s tha £ m i L ough.
o Rersa

Pact 8.25 For cvery k 2 2, and for m sufficiently larye, uith probabilty ot
Least 3, po(p) can b estended t0a esticion o such that B s eqivalent
to HAY, where mé = [mi/2]

Proof of Fact 8.25 By Facts 820 and 824, with probabilty sreser than
0, o every 5 € I, D, p9(e) is dependent on at lesst v/ Inm > [m"3]
depthl subcrcits, ech o which i cquivalet t o unique variabe.So there
i some pthat mabes this happen. Pic such .. Since H, o a ree and snce
for al but fnitely many m, y/ I > /], we can extend pa(p), by
Fing more varabls, t 8 resrcton o n such  way that  leaes exacly
" branches st every naneaf node. Since the fanin ofevery level-1 gate is 1,
the bottom two levels ofthis reduced ciruit can be colapeed fnto 1. Thus,
o reduces I to HS Q Fact825

Now we are t the final stage ofthe proa. Suppose that m islrge, and.
apply Lemma 821 to C with s = ¢ = mi3" Then wih probabilty rester
han or equal to 1 ~a, o(p) can be extended to o restriction o such that
each depth-2 subeircuit £ of Clo can be rewritten as it B satsfying
the following conitions:

L. Bis an AV ciruit i and only £ B s an V-A circuit
2. Each depth-1 subeircuit of E" i o favin at most m

Since a < 6t = 6m~1/Am?™" < ="/, the probability tha the svent occurs
for ll depth-2 subercuits i C s t least.
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2(-evm
21-ma)
B
5
for suficintly lrge . Thi prove the fact O Fwss

Fact 834 Ifm is sufficiently ’av)z, with probabilty greater than §,
16 € T0) o)
holdsfor ll 3 € Iy
Proof of Fact 8.24 _ Again, by symmetry we have only toconside the case
in which k i odd. Lt j € Iy For each i € T(), p(s) = » with probabiliy

q=m~V/3 For cach 4,0 < d < m, o py be the probabilty that for exactly
dof the i €T(), i I €T)] ol = #}l = & Then

e (5,

o probaity et cquation 89 dows s e for 3 p+ -+, where
2 B R il 2 a0 d s tha 2 S 4 €,

1) (725) < (3) (57) = v

1= m )" < (1=t yt

2 22 i, (59

1= Y~V = Vi - mo
Thus o every m > 232 d such that 0 S d S,

J——
211 < T,

»e

Forallm22,

ot
S-m

S -m

e t/aymey (Y)Y o
<o T
<1 m VA
= oo Ny
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by pypu(pus) it holds that Oflog|y) queres indecd suffce for binasy
sench to pinpoin the census vlue, Let the census value obtained be de.
noted 7.

Step 2 Adk to V' the query Lyt 17, and accept if and oy it
the nswe s that 1y #1 1 € V.

“That completes the satement of the algorithm. Note that the sigorichm
cearly i 8 65 algorithm. Furthermore, note tht the algorithm indocd ac-
Cepts L. Tis I simply because, given tht Step 1 obtain th true cenaus r.
the St 2 query to ¥ can acept. only if the actual srings in SR 0105}
e guessed (because there are anly r trings t those engths, o f  istnct.
trings n S have been guessed,then ve have guesed ll of S4P () and,
when sed by M to generate o prefix of ST (and ok that this preix is
corect on al querics to SAT of length at most pu(y), since such queries
senerate queics o of engeh a mosk (), causes N 10 ccept

So, since L was an arbitrary st fom £3, we have 5% = O, Since 0F
is closed under complementation,this mplis 55 = I, which tel implies
PH = 5, So PH = 55 — 93, completing our proct. o

‘The proof for the ¢ase of < hardnes s more diffult than the case o
<f-completeness, since the census proof used above cruially uses the fct
that the sparse set i i NP. The proof below rolsout a different tick. It
extenively uses nondeterminim to guess  set.of strngs that, whie perhaps
ot the exact lements of . prefix of the sparse NP.<fhard st, function
Just as ety 2 such a pres. The folloing result i often refrted to a8
the Karp-Lipton Theorem.

Theorem 1.16 (The Karp-Lipton Theorem) If NP has sparse <5
hard sets then PH = NP,

Proof Let S be  spars se tha is <E-hard for NP. For each £, et pu(r)
denote 4 Let 3 b such hat (v)[[S<] < py (o) Lot M be o detr-
miistic polynomia-time Turing machine such that SAT  L(MC): such &
machine must cxise, as § s Tuing-hard for NP. Let k be such that pa(n)
bounds the st of M for lloracise vithout o of enseaity lt M b
such tha such an integer exists (see Pause o Ponder 1.15).

Let L bo an arbitray st n 55, W will ive 27 lgorith fo L. This
ctablshes that B = I, which el impliesthat PH = I, thus proving
e theoren.

Noo tha,snce SAT s NP-complte it certhat 5 ~ NP, i
paricla, ther acetwo nendeterminisic polynomial-ime Turing machines
Ny and Ny mch that LNV — I, Lot b sch that p) bounde
the nondetermiistic rantme of Ny fo il oacls, an such hat pe(r) 150
bounds the nondeterminiatic runtime of Ny fo al oracles; without loss of
generlty, k. Ny and N b such Chat such n tego exists (ee Paise 0
Fonder 115),
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So, the probability s more than . Thus, with probabilty grester than §,
hise i resticton & depending on p such that

1. HA o is qivalent o HS7* and

2. Cla can be converted to o depth k —1 ciruit C*of sz t most 27

7" cach of whose depthl subcircits s of o

o
et

By our induction hypothesis, HA7" is nok cquivlent o Cfo. So, C cannot

compute 1k, This proves the theorem. a

Theorem 8.26 There is  elatvised word A in which PHA is infrite
Proof For each k 22 . cach language A, define Ly(4) as fllows:
Lu4) 1

where 21, 3o i an enumeration of sl srings of lngth kn n increwsing
exicographic order. More precisely,fo every k 2 2, every language 4, snd
ey >l

0" € Lu(d) &= (Qun i1 € 37) Quin m € 3)
(Quniin €S m e Al

where 91 - i denctes the concatenation of i, . ux snd for ach i,
1S5 € K Qm il iis odd and 3 f i is even. I s clear fom the def.
inition that for every oracle A and every & > 2, Ly(4) € T, We consruct
an oracle A such that, for every k > 2, Lu(4) # P_,. Since for every
k22,57 = L, implis T = B, this orace separates 2% from B2,
for all K> 2, und thus makes the polynomial hierarchy infite. We s
the same enumeration pi, pa . of polynomials and the same enumeration
11: a1 of polynomialtme computable functions as we did in the poof of
Thcorem 8.11 Recal, by Proposition 8.12 that,fo every k > 1 and fo every
all AC 5", if a language L belongs to T, then thre exist & polynomial pc
and o polynomil-time computable function f; such that, for every =,

€L Quriwn € BH0D) - (Qunya € 3D)

Quonz:z € (L plls)) ®10)

Uste o, v 2) € A® Al
where forevery L1 <1< k-+1,Qy = 3if s odd and Q4 = ¥ f L is even. For
iples s = (55, ) and oracle 4, et K, (4) denote the set of all  satisying
the condition on the right-hand sde.

The language A s constructed in stages, AL stage s = (i) we will
denity a intger £, and extend A as well 8 7 up to lengih £, 5 tha there
exiss some integer n > 0 such that 0% € Lys(4) <= 0" ¢ K,(A). We
asame chat for ll £, > 1, 1,5,4) 2 1 and that (1,1,1) = 1. L.t = 0.
We put the empty sting in 4.

10" | Baxaten) xalea))
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Proof of Fact 423 Part 1 as wel ss the ft to right disecion of part 2
s strightforward. To prove the right to left disection of pat 2, suppose W,
st (d-+L)-nce but is dnie. Then ther exsts some € Reach(i,d +1)—
‘Reach(s, ) soch that there e two distnet paths from 1 to , with respect
to Wi, Since u € Reach(i,d + 1) ~ Reach(,d), the weight of the two paths
hould be d 4 1. S, they are minimum-weight paths. O Fact 423

Now e build & UL algorithm for the incremental steps. Lot 1 < § < n
and 1< d < 20, Suppose that W, is (4~ 1)-nice and that Count(id ~ 1)
and WeighiSum(i,d - 1) ste known.

Stop 1 Set counters ¢ and s 100
Stop 2 For each node u, 1 < <, do the following:

(s) sl ReachTest t test whether u € Reach(i,d — 1). Then
f the RoachTest outputs “ilure” then output “ailure” and halt,
e
o ifRoachTast aserts that € Reach(i,d—1), then skp to the next
s
« ifReachTest ascrts that u ¢ Reach(id 1), then proceed o (b).

(6) Set. the counter £ 10 0, then fo each node v such that (v,4) is an
edge in G call ReachTost to test whether v € Reach(iod - 1) and
< ifReachTast: rturns “faiure,” then output “fulure” and halt, el
« ifReachTest asserts that v € Reach(s,d~1) and MinWeigh(s,v)+

Wi(o,u) = d, then incroment £
Next,
64 =0, then move on to the next w without touching ¢ or s, else

0= 1, then increment e and add d to 5, lse
06> 1, then assert that W, is ot dnie aad halt.

Step 3 Set. Count(id) to. Count(,d — 1) + ¢, st WeightSum(id) to
WeightSum(i,d —1) + 5, and halt

The correctness of the algorithm follows from Fact 423 I s clea that the

space requirement is Oflogn). Note that W, bang dnice guarantecs that

ReachTest(,d) produces exactly one succesfal computation path. S, there

s  unique successful computation path of this algorithm, along which exactly

oneof the fllowing two events oceurs:

« We e tht Wi i 3+ Dpsice and cbinin Coniid + 1) and
e+,
@ W e that W, it (4 1pnice.

Thus, we can execute the nduction step by UL lgorthm. Putting
o o . e 8 UL Tacins ot deis GAP with (i
AW, Wiy on inputs of ength ) s th advic. Thiscompltes the proot
of Theorem 422, Q" Theorem 422
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Gupta (Gup03] showed that R C.P = BP - C.IP. Groen ot al. GKRI95]
observed that. PH s included i the clss of decsion problems whose mern-
erbips ar deermined by the midle b of 4P funcions.

"The oo techigue used n the cebratd paper by Tods i he one
by Vliant and Vasitani [VVS6], Roughly speaing, 1 order o reduce the
cxcinaty of an unknown nonempey st S of somzeo vetors in (0,11
e apples  sequence of ier. Ench fler can be wrten s b2 = 0,
here - i the it prodct madulo 2 of n dmensional vecors and only
ectorssaifying b 2 0 s passed through the e, Valint and Vazirani
Show that,for any nonempey 5 C (0,11~ {07, i o sequence of n andom.
s by, b € {0,1)% s chosn, he probabiiy hat i some point 1
05", her o exuely ne vt i 3 tha pas trough ol the s
up to by i at least . Ths with 1k technique, ane neds quadratically
any bis (o achioe s conian sucees probabiky in order 0 Tduce the
Cadinality to one. Wo may sk whether 1t i possie o e fewet bis 10
acies  consant suces probbility. Nik, Resan,and Sivakumat (NRSS5]
develope  redution ehemetht s  uaslinnt mumberof bis o acicve
Contantsuccss probtiy:

“Todxs Theorem s aplications n circut thery. A tranlation of
Theorem 4.5 nto cirui class is: ACt (e clos o langunges recognised
by Tumilis of poynomisLsizn, contant-depth, unbounded fanin AND-OR
i) s included in the cas of langunges recognzed by ol of siae
29, dupih2 probabilsic circits with » PARITY gae a the top and
pollogaihmic fanin AND gate st he bottm. Thi faclasion vas it
proven by Allender [ALBO4)ung » diffcet echniqe. Late, Allnder and
Heteampt [ATIO]showed tht, o vey prime b p,the class ACC
he <l of langinge tecognied by famlies of polynoial sz, constant
depth,iruit comising of b fain ANDs, unbounded i n ORs
and unbounded fan-in MODULO p (computing whether the mumbes of 13
i the inputs i n divisibe by p) gatess incuded i the folloing thece
lases f angunges: () th s of nguoges recognioe by dept 4, poylog
aichmic bottonefa-n, iz 24 gt conssag of nbounded fnin
'ANDe, usbounded anin ORs, and unbounded fanin MODULO p gates; (b
he clas of languages ecognizd by depi 3, plylogarichic bottom. fon-
i, sae 25670 cicuis consisin solly of MAJORITY gates (compting
Whethr the majriy of the nput re 13 and () th lass of gunge e
ogsized by depih2, pllogarithmic botomfanin, e 25 prababis
i iruit with a MODULO pgate a the top and AND gates st the bottor.
They alsoshowed tha f the ACC, cus i uiform, thn the casscs (8, ()
and (9 can be all unform. Kannn ot al. [KVVYE3] independently proved
he uniformity el egading heinclision nvaving cas (6 Yoo [Yao9]
Showed tha the incusion involving cles (1) hlds for nonprime modulo p
o el T [Tards)] showed that ACS i incuded i she el of Lngnges
tecogaized by dep2, paylogarithmic botom-anin, i 297 prob.
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4.4 OPEN ISSUE: Do Ambiguous and Unambiguous
Nondeterminism Coincide?

In Sect. 43 we showed that the classes NL and UL are equal under
polynomialsize advice. Can w get id of the polynomialsiza advice, i,
4 NL aqual o UL? One tempting approach would be to derandomize the
Tlation Lemna, however o one s yet succeedod along that path, It is
o known that the equivalence holds f there s et in DSPACE]] that
Fequires circuits of size at last 2° for some ¢ > 0. In partcula, NL = UL
T SAT requires crcuits of size at least 2 for some ¢ >0,

‘Also, what can wo say about the question of whather NP = UP?
There it an orace reltive to which NP # UP. Since there s also an
oracle rlative to which NP = UP (o5, any PSPACE complate s, as
NBPSPACE _UpFS*ACE . PSPACE), relativizable proof techniques can-
ot sttl the NP = UP queston. I fact, it even remains an open question
‘whather the assumption NP = UP implie  collase of the polynomial hier-
archy

4.5 Bibliographic Notes

Past 2 of Propositon 46 is due to Ko [Kob2, Lemma 49 is due to
Schining SchS). Praposition &5 s o o Papadimitrion nd Zachos [PZET]
Regan (Reg] st noted the cosure of 4P under adiion. The abse.
vation appls to L. 4 wel. roposton 416 s dus to Balizar, Book,
a0 Sckining (D585, se b [AngS0 GI70), Buntzoc ot ol DN
proved tha GLVY = . The race, mentoned fn Sct. 4.4 relativetowhich
NP 7 UP i due o Rackoff [Racs2]

The Lolation Lemma was aablished by Molmuley, Vasieas, and Vasi-
ran [MVVET]. Their verson deas only wich a single collecton o sts. Our
Version,which desl with ki calcions f st taken fom the work
of Gl and Wigderson [GW0§].

Tod's Theorm s due to T (Tod01c, and Lema .14, Thorem 4.5,
Theorem 412, Corollary 410, and Gorolry 417 ve al from i s
ol paer. Pat 1 of Propiion 4.0 s often witen 50 BPP = BP - P,
where BP- is what is kown 45 the BP quaaie or the BP operator
Heller and Zachos 256 ttedced this quantiie and frt proved pat 1
of Propastion 5. Corollry 47 generalizes Adieman's [AAIS) caty re-
St TP P/poly. and can be found in Bennet and Gill [BGB1) nd
Schining [Sch3b]. O cthe form of Tod's Theorem is PP C B - PP.

“Tod and Ogivara [T02] showed that C.PPH C BP . C..P o e
ey K 2 3, that ModuPPt C BB - Mod,P. Taru (T3] showed that R,
he onecsidd emor vrson of BP, can felace the BP- on the rghthand
ide rogrding PP and P, Le., PP CR_PP and C_PPH ¢ R C.P.
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billtc circuts with & MAJORITY gate ot the top and AND gates at the
bottom. Beigel and Taru [BT04] showed that in the incusion nvolvin class
(©), deterministic circits sufic. Begel, Reingold, and Spielman [BRS1]
Showed that the class of languages accepted by a constant depth, polynomisl-
Siae ciruits with sny symmetric gate (1. the owtput depending only on the
umber of 15 in the inputs) and unbounded fan-in ANDs and ORs elsewhere
s ncluded in the clss of langusges recognized by & depth-, size 296%™
ireuits with essentaly the same symmetric gate at the top and poyloga-
ithmic aa-in AND gates at the bottom.

“Another application of the islation technique isthe probabilty one “in-
clusion” of NPMV in FPL. Watanabe and Toda [WTS3] proved that with
probabiiy one relative t & andom oracle NPMY (the clse o multvalued
Bondeterministic plynomiak-time functions) has  refnement (see Chap. 3)
i FPL, the clas of functions computable in polynomil tme with paralle
acces to an NP orale.

Wigderson [Wigod] howed how (o spply the Lsolation Lemma to prove
NL € 6L/poly. In an expanded version of that paper, Gl and Wigder-
Son [GWb] asked whether there was any e of the mltile collection version
of the Islaton Lemima. Allender and Reinhasdt [RA99] gove an afirmative
answer o that question by proving Theorem 4.2, Chari, Rohatgl, and Srini-
vasan [CRS35] developed an soltion method that uses fewer randomm bits
than that of Mulmuley, Vasirani, and Vasirani. The reslts that relte the
NL = UL question tothe izt complexity of SAT and that of DSPACE(n),
merioned in Sect. 4.4 ae by Allender, Reinhardt, and Zhou [ARZ96). For the
fac that “standard” graph accesibiliy problem is NL-complete, see (Ss+70).
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o the sring 0, the mumber 2 cortesponds o the sring 1, the number 3 cor-
responds o the string 00, and 50 on. In ight of this biecion, we wil usually,
i this chapter, speak of integers rther than strings. Since acvual Tring ma-
chines operate only on srings, when we say that f(n) i & polynomial-ime
table aperation, we mesn the runtime is polynommial n the length of
ponding to n, and i fact the actul input 10 the Turing ma-
e srin corresponding to n—sinc i this chapter integersare just
alternate intrpretations of binary strings via the already-mentioned ijec-
on. For example,there certialy is a Turing machine that takes o stings
and,in poynomial-time, outpu the sting correspondin o the sum of the
integers cortesponding to i two input sirings, and so additon can be said
10 be & polynomisl-time computable operation.
For the rest of this chapter, we s the term opertion to describe any.
‘mapping from N x N to N.

Definition 5.2 Let s be an operation and.let ¥ be o clss of functions from
N to N, We say that 7 i closed under (the operaton) o f

(¥ € P € Plhs € 7
where g, () = o1 (m), S

This definition merely captures one's nacural inuition about what it

operaion o as & 2-argument function, but when the operation is @ “rad

tional” one, sich as additon or proper subtraction, we wil el fre to
expresions such as f,(n) + f3(n) raher than addiion(f,(n), /()
Lt s consider iwo exapls

Brample 5.3 P i closed under addicion. This can bo seen as ollows. Let
11 and. £, be #P functions. By the defiaiion of #P, this means there are
ondeterminisic machines Ny and Ny such that, on each input 7, f,(2)
quals the mumber o accepting paths of Ny (z) and /() equals the sumbet
of accepting paths of N(z). To prove that #P s closed under addi
consider the nondecerministic machine N chat, on input =, makes one nitiol
nondeterministi chuie, namely, whedher ¢ will smulate N of N,. Then the
mackinesimlates the machine t chose, Note that, in effct, the computation
Feo of N(z) s  tre that hs a rout with two children, ane child beng the
computation tre of Ny (2) and the othe child being the computation tee of
Na(a). So it is clar that the number of accepting paths of N(z) is exactly
£z + ).

Brample 5.4 P s also closed under multiplcation, The proof i similar to
that for addition. Let /; and f; again be #P functions. As in the previous
example, by the defiiion of 4 this means tha thete e nondetermiistic
mackines Ny and Ny such that, on each input 7, 1(z) equals the mumber of
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Pause to Ponder 5.1 I+ SAT in P7

Don't you fel chented when someone tells you the answer to 8 question
before you've had a chance to ponder the issue or yoursef? Sure you do,
ut this happens ll the time. For example, i you aro rading this book, you
probably already know the beautil theory of NP-completeness that was
buil by Cook, Levin, and Karp a ew decades ago. So yo alseady know the
standard,stiking, subtle ansver the fld has bl to Pause o Ponder 5.1,
ey, “We don't know whether or not SAT is n P, but we do know that
SAT i in P if and only if al of the following thousand problems ae in P,
and we alo know that SAT isin P if and only if a least on of the fllowing
(same) thousand problems is n - (For reasons of space, we omit the list
of one thousand NP-complets problems.) Basicall, your ability to consider
Pause to Ponder 5.1 a5 a fresh problem has been pretty thoroughly tanted.

Wo cannot give you back your intellectual virginity rogarding NP.
completencss. However, in this chapter, wo wil ry to do the next bst thing,
In paticulr,in Sct. 5.1 we pose scemingly stple question, Pause to Pon.
e 5.5, that You perhaps have not seen before. Of course,the question is ot
a5 important as P = NP —afer all, what question is7—but the question
turns out to raise some quite subtle and interesting isses. In snswering it,
‘one might happen to buld a theory of one's own that, at least in it general
Bavor, s not too disimilar o the theory of NP-completencas. So, we urge
Jou to take some time to pause, ponder, and—as an intellectual challengo
and exerciso—investigate Pause to Ponder 5.5, which s framed i the fol
lowing section. Section 5.2 presenta . theory that was built a8 an attempt to
understand wha the answer to Passe to Ponder 5.5 might be.

5.1 Framing the Question: Is #P Closed Under Proper
Subtraction?

For the purpose of therest of this chapter, we wil use natural numbers and
binary stings nterchangesbly, vi the standard natural bijecton that ssso-
ciates the natural number n with the leicographically n + 1t string. That
s, the number 0 corresponds to the empty sting,the number 1 corespands
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acoepting paths of Ni(x) and fs(x) equals the mumber of acceping paths of
;). Consder 8 nondeterminitic machine N that on input 7 nondetermin-
{nicaly guesses one computation path of Ny(z) and one computation pach
of Nyx) and then accepts I boh guessed pathaaee acceping paths. Clealy
he mumber of accepting paths of N(z) is exactly f,(x)fo(z). thus showing
that #P s closed under muliplication.

It is o hard to see that #P has a varity of other closre properies
invelving binomial and mulinomial cooficents. However, our nterest is not
in properties that are easy to show that #P has. Rather, we are interested
in propertes chat it might have, and yut for which i currendly seems hard
(or mpesibl) to prove that 4P has them. If this seems strange, consider
e motivation the queston of whether SAT ls i P I might b the case that
SAT € P. However, t probably is had of impossble to prove that SAT € P
corainly, no one has yot proven SAT € P. Nonetheless, the theery of NP.
compleenee does imply interesing things about whether SAT € P, namely,
that ameng all NP probloms, SAT isa problem that is, ogically speaking,
st llkely to be n P 17 SAT i in P, then all NP problems are in P.

“This bings s to our problem. Of course, an NPTM (nondeterminisic
polynomial-time Turing machine) canmot have  nogaive number of accepting
athe. So f we are Intrested in closure under subtraction, we must restict
ur attention to proper subiraction, ., the operation, from Nx N to N, hat
i defned by 0 65 = max(0, a— b},

Pause to Ponder 5.5 Is P closed under proper subraction?

Section 5.2 providesa theory that explore this questlon, but we urge the

reader o ponder the question st a an interestng exercae, In caseone gets

stuck, the footnote 1o the present sentence ivessome very szong hints s (o
how ane can go about this

5.2 GEM: A Complexity Theory for Feasible Closure
Propertics of #P.

This i good point a¢ which to explin the mesning of this chapter'stitle,
the Witnes Reduction Technique. To us, the term witnes reduetion” ac.
ualy encapulates both an intuiton and & technique. The intuiton is that

TThere are two promising approsches. One approach i that one can atempt
o fnd & complity clas Collaper that complcely characterizes whether #P
5 clocd wnde & (Hink. Such  chavacirizatoncan b obtamed): Ancther
approach st show U, sens vry e 10 i i Which SAT is an NP
prebiem that s giclly e el 1o be i (1., 1t he ll problome
10,6 s polynomiab-ime computablecperation nde whizh #P s Jogicaly
et iy o i closed (1.1 4P i lowe under , th #P  cloed sder
vy polynomiatime computable cpersion). The oiwing secton wil o
both thse approaches
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Proof of Proposition 8.1 Let k> 1 and let C be ether T or I
Let L € C. Then there xis  plymomial po and & polymomial time bounded
dterministic oracl Tring machine M such that, for evry € 3,

26 L= (@i € BRD) Quua 33 € TP 9
(@ € S e Gz, . ) e,

where the quantfies altermate, snd @ = 316 C = {4 and @, = ¥ if
€= T We divide the proof into four cases:

Case 1 €= T34 and k s odd,
Case 2 €= T3 and k s even,
Case 3 € =T and kis odd, snd
Cased € =G and k is even.

Fist we consider Case 1. Hore @y = 3. Let 1 be » polynomial bounding

the runtime of M. We can assume that p, s nereasing. 1. for ol n 2 0,

P +1) > py(n). We may assume that, o sl € £ on nput u malas

exactly p () aueriesregadles o ts orace. We willreplace A by a new

machine, M, that o esch nput  simltes M on input u whilecounting

S ariabe C the number of queriesthat M makes alng the simulated path.

When M hals, ifC s smallerthan (), then M queriesthe empty sring

o the orale xactly py{ju) - C times. Then M sccepts f M on 3 sccepts

slong the smulated path and ejects otherwise.

Lt N be a deterministic Turing machine that, on input w

01 = (). then simulates A" n input u by assuming, fo each , 1< <

(], tha the answer of the oracle t theith query s ffxmative i the th

i i the e i et he i o .1 ) 2 ).

then N rlects w immedintly For exch u € 5 and each v € 700, and 5,

1'% 5 < py(jl), ot R(s,v,3) ke the th ey of M" o input s alon

the simulation caried ot by N on input (). Then, for ll 4 € L if and

only i o some v, ] = p(u) it holds that N on lnput () accepts and
that, for all , 1 < 5 < py(lu), R(u,v,3) € A f the th bit of v 5 1 and

R(uv,5) € A otherwise,

Let 30 ¢ A© A and 1 € D A be fxed. Wo define » mapping fo. For
every w € I, fo(w) is defined as follows:

o I for some v € B and £, 1< 1 < [u, i holds tht ol = py(ll),
w = (w08, 4nd N on input (u,0) accepie, then Jo(w) = wR(w,v,0),
where 1 ¢ the ¢ bit of v

« I for some v € T and £, 1 < € <, i bolds that ] = pau,
W= (u,1,8), a0 N on input (u,0) reects,then fo(w)

I neitherof the above two conditions hld, then Jo(w) - 1

Then fo s polynomial-time computable,andfo every u € 5, MA(u) accpts

it and only

(@0 e ) (1 < < pu(ul) ol () € T @ 4,
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2. Do s at most 274 depth subcrcuits

Then, by Lemima 8.10, D docs ot compute 7, This, C doss ot compute
. This proves the cheorom. G Theorem 83

8.2.2 Constructing an Oracle Separating PSPACE from PH.

Wo wil ow use Theorem 8.3 o show that ther is an oracerelative to which
PH i properly included in PSPACE. Our model of PSPACE oracle compu-
tation even requires that the query tapo i polynomially lengeh bounded. (In
the model lcking this requirement, it is trvial to separste PSPACE from
PH v an oracle)

Theorem 8.11 There is an oracle A such that PHA # PSPACEA

Proof Since for every oracle A, P* € PSPACEX, it sffices to construct
an oracle A such that GPA & PHA. For each language A, deine

(O 110,1)" () All i 0dd).

Let M be a plynomial time-bounded Turing machine tht,on nput = € I,
oeses y of lengeh ], an acepts ifand only iy is inthe orace. Then for
every oacle A, and evy 7 € 5, 0% € W(A)if and only if M on z has an
dd number of sccepting computation patha. Thus, W(4) € G4 fo every
orale A

In onder to construct an oracle A relative to which W(4) & PHA, we
st introduce  view of PH in terms of contant-depth ircits and difne
an’ enumeration of ll elativied PH.machines based on tha view. Then
e conside a very simple oracl constuction scheme in which the machines
i the snumeraton are "kl one afer another, Finaly ve argie that the
scheme willbe succesfl, because constuction faing st stage would mply
Chat we could contruct o constant-depth subexponential-size cirut amily
for parity, which cotradicts Theorem 5.3

Reclltht for a langunge 4, 464 denotes {0z |z ¢ ) U (1 | € 4).
First e draw an analogy between the polynomil hirarchy and constant.
depth circuia.

W)

Proposition 8.12 etk > 1 be an integer and et A b a language. Let
b one of SEA or I Then, for cery L  C, there cxis a pomomial p
and o polmomial-ime computabe function J : 5 — 5 such that,fo cvery
Fex

€L (Qur i w1 € E70) - (Quun : yu € 2P7D)
(@uui3 157 % p=) Gz o) € A6 A, @3

where the quantfers aliernate, and @y =3 € = T and ¥ otheruise






index-336_1.png
M Reternces

ss)

(mition)

sss)
)

s
st
srwor)

{avey

KR
o)
istay

)

(OS]

{mvosoaty

(]

o)

o)
otz

3. Hartmanis and N frmerman.  On complete problems for
NP (TCoNP. In Proceing 3f h 1201 Fteration Collguiem on
futomala, Tonguapes, st Proyramming, poges 250-250. Springr.
Verig Lectare Notesin Computer Sience 8197, Juy 1985

3 Tikad R Tmpaghasan, . Levin, and M. Ly & prosderandon
Eoneraton from any onewey uncion. SIAB Josrnal on Computin,
S50 1364- 1308, 1000

3 }ikrtmanis, N. Inpnetman,and V. Sevelson Sparse seta in NP—P:
EXPTIME versas NEXPTIME.  njormation nd Conirol, 65(2-
3is0-1a1, 1055

L Hemachandea and S. Jain._On th limitatons of locally robust
positive reductions. nteratinal Joumnalof Foundatins f Computer
Sence, 59,257 355, 1001

L iemaspaandra and 8. Jha. Defying upward and downward separa-
on. njormation and Compuation, 12101113, 109

L Hemaspuandra and . Jinng. P clctivy. ntesections an ndics.
Theoretial Computer Science, 145(1-2):37-3%, 105

L iemaspaandra, 2 Jiang, 3. Roshe,and O. Wtanabe. Poynoial
time” i siectiviy.  Journal of Universl Computer. Sctenee,
3(E157-220, 1007

L Hesmaspasdra, S. Jin, and N. Vesehchagin._Baniing robust
Turing compleentes. ntenationai Journal of Foundatons o Com-
pute Scinte, 4(9245-205, 190

8 Hemer, 5 Kurt, and . Royer. On Ltruthtablo-hard angusges

Theretical Computer Siene, 115(2):383-380, 1953
S Homar ond L Longyeé. On reducions f NP et to sparse st
Joural of Compoter and Syten Sctencs, 482) 334535, 1951

O ereampt,C Lustemans, T Scwenick, 1. Volmer, and K. Wag.
ner. On the poverof poyncnial e birductions. Tn Proceedings

comploe st In Procecdings of he h Sympostm. on Mtherat.
Sl Foundations of Compatcr Sience, pag 40-57, Speinge-Verag
Lecure Notes 1n Computer Science 48, Sepember 1980

B, Hemaspaandra, A, Nk, M. Ogihar, and A Selman. P-sictve
sts and Tedeing seech s decison ve, slbvedociilty. Journal of
Computer and Sytem Stencs, 333104200, 1998

L THemaspaandre, A Naik, M. Oglhara, and A Seman. Computing
slutons uniqely colapos the polynoin bierachy. SIAM Journat
on Compating, 254 37708, 1650

L Homspaandra, C. Naipa, sd K. Paskins. A note on linear
nondearmiiem, lneseized, Kaep-Lipton adice o the P seoctive
st Journel of Univrsel Gomper Sctenc, 4(9) 670-074, 199,

. Hemachandrn and M. Ogiwar. 1y #P cooed under subtsacion I
G Rosenbers and . Saorua,ators, Curent Trnds in Theoretical
Computer Sciene: Esoysand Tiorals, ages 525-536. World Scen-
i

L Hemaspaandrs and M. Ogihara. Unisersally srslizble computa-
on. Jourmal of Compuier and Sytem Sience, S5(3)S4T-560, 1997
Ciomann. Group Theorete Agoriihma and Graph Isomaryhism.
Lectare Notes i Gomputer Svence #195.Sprnger Ve, 105






index-22_1.png
8 1 The SefRducbilty Technique

112 The Left Set Tochnique

1.1.2.1 Sparse Complete Sets for NP. So far we haveseen, asthe proas
of Theorems 1.2 nd 1.4, tre-pruning algoithms that show that *thin” sets
cannot be hard fo certain complxity classs. Inspired by these two results,
Mahaney extended them by proving the folloving lovly, natural result

Theorem 1.7 IfNP has spare complete sets then P = NP.

Pause to Ponder 1.8 The reader will want o convince him or herself of
the fuct that the approach of the proof of Theorem 1.4 uterly fuls to estalish
Theorem 1.7, (See this fuatnote for why®)

‘Wo il not prove Theorem 1.7 now since e soon prove,as Theorem 110,
 more general esult shovwcasing the left st technique, ad that result will
immedintely imply Theorem 1.7 Briely put, the new technique neoded to
prove Theorems 1.7 and 1.10 i the notion of el st Very informally, »
lef st lls in gaps o as o make binasy search easier

Theorem 17 establshes that if there s a sparse NP-complete st then
P = NP. For NP, the existence of sparse NP-hard sets and the existence
of sparse NP-complote sets stand or fall together. (One can altenatively
conclude this from the fact that Theorem 1.10 stablshes it reult for NP.
SFyhardanes rather than merely for NP-, -completeness)

Thoorem 1.0 NP has sparse <7,-hand set i and only if NP has sparse
complete st

Proof_The " direction s immediat. So, e need only prove that f NP
b & <5-hard sparse et then it has & <5-complete sparse st. Let S be
any sparse st that is <7, -hard for NP. Since S s <7, -hard, i holds that
SATZ5,5. Lot £ be u polynomiak ime computable function that many-one
reduces SAT to 5. Define

&

{043k >0 (32 € SAT)R > el A 102

)

“The rough intition her i tha " is slmost /(SAT), except to make the
proof work it via the 0% aso has a padding part. Note that if 04z € S°
then certainly = € S. 5" is clearly in NP, sinco to test whother 0% is
' S" we nondeterministically ues a string  of length at most £ and we
nondeterministically gues & potential cetiicate of € SAT (., we guess &
complete assgnment of the variblesof the formula 7), and (on cach guessed
path) we acept if the gucssed string/certiicate paie is such that /(z) = +
7 The analogous proof would merely be able t caim that i thetre were geting.

Coushy” thre would b ¢ et e ansaiaie ol among the olecion

This sy notbing egarding whether o othe ormula might b saiable

Thi,even o the et ' 1 Getng ey arg, we b ho obvios vey 1 prie
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By combining this wit squation 6.4,
e L (G € BOD) (g € R0

(@0 € 2O (421 << pillu) ol (o, 0) € T @ AL

= Gz e ). Lot T be & polynomial such that, for all 7 €

S and i, e € B0, [ )l € rle]). Deine pim) =

() + {r(n). W dofne & e mapping f. For very £ + 3 tuple

W= (et . a0, ) s defined s ollows:

6] > pal) nd ther exist some 3, .. i, € B such that
ot every i, 1% § < k. , is the preix of t, having length pollz),
o having length pi (2,30, . ), and
.
)

« Otherwise, f{u) = 51
Then 1 i polynomial-time computable and for every x € ¥,
z€Lems (i € PO o (G ap € D)
(21 < <) f(oan, o unt) €T A,
s dsird,
W can treat Case 4 simlrly. The only difrence here s that the first
auantier Q, s V.
Next we consider Case 3. Lot B = . Since 04 = 52 and T belongs
o EE, we obain the following characteizationof T a in Case 1 Fo evry
retr,
2eT o (B 1y € D) o (G € OD)
(21 <)) (o, - wwot) € B B
‘where the quantifirs alternate. By negating both sides of the equality, for
vy z€ T,
€ Lems (31 € TPOD) o (v gy € TPOD)
Grar <o) f((mm, - wnt) ¢ 5@ B)
Since TGA = A® 7, the condition in the bracket can b wit-
ten a5 f((z1, - ys,0) € BO . Sinea B = A, this conditon is
e ) € A8 A, So, for very € T
z€ Lo (1 € PO o (g 3y € D)
1< e<p() Sz, wnt) €T Al
a5 dsired. Cae 2 i the same as Caso 3 excopt. that the first quantfer i 3
This proves the propositon. O Proposition 812

Next we present ou oracle construction scheme. Lot {pr)zy be an anu-
meration of polynomials such that, or each § 2 1, p(n) = 7+ 3. For all
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Chere i some (Wi, ., W) such that for all diected n-node directed graph
without selJoop G, there i some i, 1 € § <, such that W, s good for

FC),. . F0,0) Q Lamma 420
Wo defne our advice fonction h a ollows. For every n > 2. h maps each
sring of length n to  fd collction (Wi, ., Wye) o lgitimate welght

funceions possessing the property in Lemima 420, For n = 1, h maps each
sing of length n to the empty sring. The domain size D is n(n— 1) and the
laggest weight R i 203, So by encoding each weight in binary, the encoding
lenggh of (n) will be O g ).

"Now we prove the olowing theorem.
Thoorem 421 NLC UL/poly, and thus, NL/paly = UL /poly.

In fct, we wil prove the flloving resal, rom which Theotem 421 im-
mediately folows.

Theorem 4.22 There is a UL machine that solves GAP using a polynomi-
aly length-bounded advie function.

Proof Fo smpliciyinthe fllving, t > 2 be e and et W - Wiy
ot dvic oo (. wha theavice unatia given,clt ). Al
160G b an node graph G hose membrshp n GAP e are tsing.

We need to define some notions and notation. For each i, 1 < i < n?,
and j, 1 < j < n, define MinWeight(i, j) to be the weight of the minimum-
i pa o 15 3 wih repact t the weght foncion Wi 5
ek tethae o 1 in G, chen M Welght(.) - . For snch i 1 <
i > 0, duine Reah(id)to b the st of sl modes 3. 1 < § <
. that ar reachabler o 1 i pahe of weight 3 ot 4 it fepoct
to the weight function W;, define Count(i,d) = ||Reach(i,d)]||, and define
WestSum (0 ~ 3, MW, 3, whire 3 anges e all oo n
Resch( 5 b we sy ot W i i i, avry 3 € Resch () here
s i i wight path rom 1t G Wi repect t .

D b oo comrction of Ay ey i wight pah has Ve st
ot (2 . So o avery £, 1% 5 % 7, s for vy 4, 42 2,
¥ ok that Rench(d) ~ R+ 1) Count( ) — Cout(d + 1)
nd WighSm(id) ~ Weihtum{sd + 1) Noto tht 1 i te nly nods
S can b reachdfom 1 without ravering s S, fr 1,1 < 1 <
i b e MinWeights )~ 0. Raneh0) ~ (1) Got(s,0)
WeightSum (.0 = 0, and 1, i G

W prove that if W, is 4aica and it we know Gouni(id) and
WeightSum (), the o sy 3. 1 € 5 . wo can e, v arambig
ouslogspace compuation, wheiher J belons o Reac(, 4, Rocall tat n
ho prvious section e prsated s ondntesministi ogspac procedure or
Eueking o o, 73 o 1o e mod . Lek e iy thi procedure
= llows

o For oach node J, 1 < j < n, attempt to guess a path from 1 o 5 having
wegh at most 4 (with respect to W) and having length st most 1 - 1.
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s and 1, can swap the mames of the sink node ¢ and n, and can liminate all
st loops, GAPLGAP. GAP is clearly in NL. Hence, our problemn GAP is
NL complste too.

4.8:2 NL/poly = UL/poly

We show how t0 apply the Isolation Lerma (Lemma 4.1) to prove NL ©
UL /poly. Suppose we wish to decide the mermbership in GAP of an arbitrary
-node directad graph without selfloops. Let our universe U(r) b the set of
l potentialedes in such a graph. Then [L(n)] = n(n - 1). Lt our weight
functions map cach edge in (n) to an nteger between 1 and 2n. For . given
mnode dircted graph G without slfJoops, and fo each , 1 < 4 < n, define
F(2,G)s o be the set of ll simple paths in G from 1 1o i. We view each
et of F(1, G) 8 subset of (). Since F(n, G) s a.colection ofsmple
paths from 1o §, no two clements in 7(n,G); spocify identical paths. Then
a weight function' W is good for #(n, G) f and only f the minimum-weight
path in G from 1 to  with respect to ¥ is unique. Now apply Lemma 4.1
with m = n, U = U(w), Z = Z(n), F = F0,0) -, Fa = F(Chos
D= n{n—1), R = 2n> 2mD, and a = . Lot 3(n) b tho s of all weight
functions whose values are a most . Then we have the following lemma.

Lomma 4.1 Let n > 2 ond let G be an n-node dincted graph. Let U(r),
2(a), and F(n ), .. (1, G)a b as staed above. Then more than hal]
of the dge weight functions i Z are good for F(n, G, .. F(n, O

Suppose we wish to sclct, for each n > 2, sequence of some m(r)
woight functions, Wa, .., Wa(n) € Z(n), such that fo all -node diocted
raphs G, there is some i, 1 < i < m(n), such that Wi is good for
F(r,G)r, .., Fin, G)a. How large m(n) should be? The fllowing lemma
tates that m{n) can be as small s 72,

Lomma 420 Let n 2 2. Let U(n), Z(n), ond F(n, Gy, .. F(r, ) be
s st above. There i collection of edge-weight fantions W, ¥,
in Z(n) such that,fo every m-node directed goph without sl Joop, G, ther:
issome k, 15 k<, such that W i goodfor F(n,G)y .. ()

Proof of Lemma 420 Let n > 2. By Lemma 419, for evory n-nodo di-
rected graph without slfoogs, G, the proportion of edgo-weght funcions in
2(n) thatave o for F(n,G), -, (7, G) is moro than a al.So fr all
node directed graphs withous sl loops, the proportion of (Wi, .. Wos)
such that for all &, 1 € k < 3, Wi i bad for Gy F(n, )
s s than 2. There are 2%~ directed r-node direted graphs with-
ut selEloops. So the proporton of (W, .. W) such tha, for some -
node directed graph without selloop G, fr Al i < § < n, W, is bud
for F(n,G)y, -, F(nG),, ' ess than 2°-12-%* < 1. This implis that
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cquation 72 21 = 0, which b » sniqe posiie sution Z = 15
5o he unique stion of th oriial equaon spPoachs

— o

5(n
Ths, for suficently large n, o < 0.45 = . Since ther are at most 240

depth-2 subeircuitsof Cy, the probabiley hat every depeh-2 subeizeit can
b sewitten a6 an VoA cicuit of bottom fn-in at most i ot least

N
oG08 Z 1 — (1) 51— (2
12 1- )0 51 ()

for suffcietly lrge . 1 we eplace each depth2 cirut of Cofp by an
ettt then s can ol he sscond and the hrd el
1y it one bacaus thy Bave he o te ype, therey btsning an
aion dup 4 1) s, Thus, withprobabiey greste thn §, Co[p
on o roita 38l ofdeph & — 1 and of e ot st e (C),

On th ot hand, the expeced umbr of vaiable n Colp s 7 =
2. So, o sulfcintylrge . the probabily thatthe mumber o varables
Gy o at et o i g chan |

e prababiiy dhat both of the sbove events occur t the same time s
Jarger than 3. Note that m > nt= implis €m,k — 1) > €, ). Thus, with
o posiv prbabilty, w cancomwrt G5 & dept £ 1)t D
e S pm arablessuch that

1 every depth-1 ubircuit of Dy is of fa-i at mast £(mk — 1) and.
2 there are st most 21D depih2 subeieits of Do

By our inducive hypothesis, D dors not compute =, and this, C docs
ot compute 7. Ths the cam holda fo &. Thi proves the emma. ~ 0

Now we ae resdy to complete the proaf of Thorem 8.3
Proof of Theorem 8.3 _Let n > 1 and et Co be » depthk it of sze
bounded by 20710055 e ca view Co s 2 depthe(k + 1 crcit
al of whase depthe1 subcircuit ar of famin 1. Let p = 3, = f(R)=T,
and ¢ = 1, and apply Lemma 8.4, Since = 2 = f, tho probabilty that
il depth 2 subcircitsof Cup can b rewritten s that the second and the
thid lvels of o[ have the sam type and thus cn be collspsed into one
st leas 1 270 21~ 2%

‘On the other hand, che exprcted mumber of variable in Calp i . S0,
it probabilty s han 3, Cf i dependeatcn ot sk m = § i

So, with probabiit (1~ 2°4) + § ~ 1 > 0, the above two events occur
st the same time. Thas, fo some rsticton . Cop can be converted (o &
st D such that

1 every dopth-1 subcircut of D s of an-n st most £m, &) and
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This ot o s 1 by th asumptonof th e S P < o, Th,
h i b Thi provs the e G Lame 5
Lo .4 ity llows o L 5 by taking F = 1.
Nt e deiv anethr e G Lo 8.4 For uch & 3 2 and
21, dene i) =

Lomma 8.10 Let k> 2. Let (Culuzy b a fomily of depthk cireuits Sup-
pote that forcuery n > . the ollowing conditons hold:

1. Buery depth subcireuit o Cy s o fanin at mst £(n, ).
2 There ane at most 290 depth 2 subeireuits of G

Then for only fniely many . does Cy compue

Proof The prooti by inducton n k. Forth basecase, e &
A2 110 K) < Lat > 1 a0k, be  depth2 stnit
xe condiions I the watemnt of the enma By prapety 1, sach dephl
Subcizcit of Gy s of i 1 tha . 5o, i the case wheto O i 4 VA
iy thre s o rstricion p of is s han  hat educes o af the
Suberits to 1, thasby rodudng G to 1, and 1 the cxse where Gy 1 an
I\ i, chre i  rsriction of sz e han . tht edces one of the
Sabcrctsto 0, hreby eccin Cy o . Such  etriction doe it echce
o o constant onction, 20 Cy do o compate 7o

For the inducton sep, et & > 3 nd sppose chat th caim holds for
Al 12 £'< k. By ity betwesn A a0 v, e may sasume hat the
Septh s subcncus of G are A e, Lt 5 1003 and suppos O
st propertes 1 and 2. Letp = iy = ™ and et s = ¢ = n, ).
Because 0 < 5t = } < 1 and for eviy 1 > 10, 0 < p < 1, we can
apply Lemma 84 o cach depth2 subiruit of Cy. Then, for cach dpth2
Subcrcit H of Gy th proability tha H cunn be revritien s an V-A
i o bottom fnin at mat s 14 sk 2400, wher @  the nidie
paiiv ook ofth squaion

() - (o)

By plugging p = 1y snd

Since £ s an ncressing function of , the lefthand sde spproaches
.

s increass, which has the limit value of e By x similar analyss, the
right-hand sde approaches 1 ¢ BY toplacing e by a variable Z, we got

£, ) oo this equation, we obtain
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‘Count the mumber of 5 for which the guess is successul (cal this number
C) and compute thesum of W, for all suceestul 1 (callthis et S).

« Output “successul i C = Count () and § = WeightSum(i, ). Output
“failue” otherwise.

Note that if W, is dnice and both Count(i,d) and WeightSum(i,d) ae cor-
rectly computed, then there i only o computation path n the shove along
which ¢ hlds that C = Count(i,d) and § = WeightSum(i, ). Furthermore,
the space roquirement fo this procedureis Ollog ), sinco the guesing part
can be sequental, C < n, and < n(2n) = 20"

Now modify this procedure furche, so that (i) it takes o number j,
155 < n, o5 an additonal input, (i) it memorizes whether the guess i
sucocsfl for J, and if se, it memorize tho weight of the pach i gueses,
and (i) if the computation is succesful (namely, when C = Count(,d)
and $ = WeightSum(i,)) it outputs the information that it has memo-
rise in (i). Wo call this modified version ReackTes. Fo a dico W,
Count(i,d) and WeightSum(,d), ReachTest () behaves as an unarmbiguous
Iogspace procedure. Since the modifcation doo not change thespace rquire.
ment, If W, is 20 nico, thon ReachTast(n) wil discove, via unambiguons
logspace computation, whether G € GAP.

Now we have only to develop a UL proceduro for finding an i, 1 <
§ < n?, such that W is 2n'-nice, and for computing Count(i2n%) and
WeightSum(i,2n%) for that . We design an inductive method for accom-
plishin this task. We vary  rom 1 to ¢ and, fo each i, w vary d from 0 to
21, For each combination of ¢ and d, e test whether W, i d-ice, and if the
st i passed, we compute Count(, ) and WeightSum(,d). Note fo every
6151 <, and for very d, 0 < d < 2n, chat if W, i mot cnice, then
W is ot (4 + 1)-nice. Thus, if e discover that W, s not dnio fo some
,then we il skip to the next valoe of { without nvestigating acgor values
of d. Recal that for every i, 1 < i < %, Wi is O-nice, Reaeh(s,0) = {1,
Count(,0) = 1, and WeighiSum(,0) = 0. Iierating the vaciabes § and d
roquires only O(logn) space. So, it suffces to prove that there s & UL pro-
cadure tha given £, 1 < 1 < n, and d, 0 < d < 20° — 1, such that W, is
denic, Count(, ), and WeightSum(s,d) tess whether W, s (d + 1)-nice,
and ifso computes Count(id-+ 1) and WeightSum(i,d + 1) To obtain such
an algorith, the following fact s useul,

Fact 4.23 Let 1 <5< n and0 < < 20 ~ 1. Suppose that W, is denice,
Then the follwing conditons hold:

1. For cvery u, 1< u € n, the conition u € Reach(i, d + 1) — Reach(i,d)
i equivlent 1 u ¢ Reach ,d) and thee i some v & Reach(id) such
th (1,4) i an edge of G and MinWoeighti, 1) + W,(0, )

0 W, i i+ 1)-nice i and only f for every u € Reach(id + 1) - Reach(ind)
ther i unigue node v such that MinWeights,v) + Wi(v, ) =+ 1
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‘The quantifrs appeasing in g olternate; that i, i the case when Q, = 3,
forall 7,1 <6< k4 1,Q, = 34 0dd @, ~ ¥ if ris even, and in the case
when Qy =V, forall 7,1 <6< k+1,Q, =¥ if 1 is odd @, = 3if is even,
For each r, 1 < < k, and each i, ., € PO, Tt s . o3r)
denote the formula

(@roatess s € DHAOD) - Quyn: € TPHO)
(Quart: 1 <0< P (O, - 00 € A0 A

For cach £, 1 € ¢ < pu), ond ench w3 € DO, et
Sl sl denote the foe

[, ) €T A

To construct Co, for each of the &'s defined in the above introduce a gate
cormesponding o it. The type of the gates i dotermined st olows:

 The node corresponding to o isthe output gate. The autput gate s an A
gate f @, ¥ and s an V gate i @, = 3.

Each node corresponding (o » G, formula is an input gate

© Lot 1< 1 < k. Each node corresponding (o » 4, formula i an A gate il
@y =¥ and is an V gote i Qroy = 3.

The inputs to the nonlea gates are determined s fllows

« The faputs ofthe outputgoe are the gotescoreponding o (6] [ €
iy

¢ Lat1 €7 k=1, Let g be gt corvsponding o 6, . ) orsome
Yis -y € DD The inputs of g ate {Brialiny - el | s €
Wil

« Lot g b » g corrspondin to 8l ..l or some s, - 1n €
e, The inputs of g ar (buusln - 0] 1 ¢ < Gu)).

Since 24> n, B4 has cadinality st lsst . Let W = {uy .. e} be
the smallst n ngs of ngth n). Lot vy, -, € B and 1 £ <
(). Let 9 be the input gae cortesponding (6 iy, .. vhot. Let
£ 504,51,y ). The label o g i detemined as follows

I or some 1,1 <1<, 2 = T, then i labeled

o I for some 1 <1< m, 2 = Our, then 9 islabeed .

o 16 for some u € *— W, it holds that £ = L, hen g is assigned 111w € A,
and is assigned 0 otherwise.

o Iffor some u € Wy i hods that
and assigned 1 otherwise.

« 10215 the empty stng, asign g o 0.

Then wrk fom the input level o eliminate all subciruits whoss output is

 constant regardlessof the vaues ofw, .. . This s Co. The circuit G
clurly has depth & + 1.

O, then g s assigned 0 € 4,
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palynomial p, ther i some > 1 such that, or all n > 0, p(n) < pu(n). Let
FurFo - bo an enumeration o al polynomiak-time computable functions.
Forcach trple = (5, k), ot K,(4) be the anguage in T4 charactarized
as'in squation 8.3 with p, and J; in place of p and , respectively. More
precsely,fr svery tiple 5 = (1,K), fo svery = € 5, snd for evey oracle
A € Ky(4) i and only if

@1 € TPD) - Qs € )
(Qunt: 1SS sz, o v t) €T @A)

The langunge A is consructed in stages. AL stago 5 = (i,5,K) wo will
dentify an intoger £, and extend A as well 1 & p to length £, 50 that
Chere exiss some integer 7> 0 such that 0° € W(A) 4> 0° ¢ K.(A). Wo
assume that fo all ,3,k > 1, (i,7,K) > 1 and that 1,1,1) = 1. Let fo = 0.
Wo put the cmpty string in 4.

Let s = (1,3, 4). The construction in stage s procesds ss llows:

Lt o (rspctivly, A7) b th st ofall it n 7 (rspctzl,
) pio o sage . holds that Ao () Ay = 0 and Ao U A

« Let'r be the smalls polynomial i the snumeraton such that,for ll ¢
5 and - oy € 5P, it b that U (2 - «uko 3| < (]

@ For sach = 6y + 1,6a1 42, .., st Whether there s & paiition
(Bo,B) of (5157 such that By 3 o, By 2 A, and

0 EW(B) = 0 ¢ Ki(By).

16 such a patitin i found o, the d the following:
—Set, o).
~ Add A sings i By — Ao 0 7.
= Add ol s n B, — 4 1o 4
~ Tominate the loop and proced 1 the next tag.

W claim that thi construction s sucessula verystage. We prov the
i by contradicion Arsume that st stage 8 = (,.), ot sl £y +1,
the Searh for 8 desied parition fis, L. for all 0 2 £,y + 1 and for all
pactitions (B, B,) of 57)such hat B3 Ay and B, 2 A, it hlds that

0 EWB) = 0 e KBy,

We construct Fom K, fmily of depth- (k1) it C, G, .. o pasty
i the Dlloving way.

For cach 2 1, bt () = minl € N|12 o1 4142 2 n). For cach
2 1 he et i consiructad fom du below, whic s the Fomul for
K on it 049

o= (Qun s € B o Qo € TAHO)
Quaat 1S ES PG O, - ) € XD 4
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Proposition 113 Rj(NP) = PIOC-x)
We will s the latter form of ©3 in th proof below.
Thoorem 114 IfNP has sparse, for NP <-complete sts then PH = 0}

Proof Let § be a sparse set that is <J-complet for NP. For cach £, et
i) denoe € + £ Let 3 be such that ({[S<7] < py ()] Lot M bo
 deterministic plynomisktime Turing machine such that SAT = LMY
fuch 3 machine st exist, 4 5 e Turig-haed for NP. Let k b such that
74(n) bounds th rutime of M regardie ofth aracle M has;wihout low.
o generlity, et M b chosen 80 that such 5 k exist

Pause to Ponder 1.15. Show uhy this “without oss of generlity claim”
holds

(A sketch or P to Ponder 115 Gven o machine M, et the
machine Mo M. . b  llows, M (2) il smlateth ackonof xacly
] ep fth ation o MA(2), athen il bl in s acoping te
if MA(z) halted and accepted within p(|]) steps, and otherwise will m:m
Notetha inc the verbed ivolved 1 imalfog on tapof machine
ok plnomia o s e vl kit o 0 kot b ey A bl
hat MA ruse i time st mosk (). Furthermre, n ach eaivioed wold
i T et il i st LAY 07
Relatey, n o prof, Bven the machine M suchthat SAT = LM

il s lht of whatevr polynomiltime bound M obeyssmialy replaes
M withan approprite M, rom the s o machines st deseribed)

L b gy 35 okt s SAT NP o,
s cea tht 3% = NPT So,in particular, fher s some nondeterministc
polynomial s Turing mackine N such that L = L(N'AT). Let £ be such
ot () bounds th nondeterminisierontime of N fr alorcks without
o ofgeneraliy et N be chon Sh ta s an ntage it (o Ponte
to Ponder 1.15). Note that L = L(NUM"),

Detne

V= osrar| 1=z U

(19| GZ € S2] =q h 2 € LNHO))
N that i lght of the fct tht § isan NP st V & NP.

We now gve  OF algorithn that aecpts L. In particlar, we ive an
algorithm hat makes O(log ) cls o the NP oracl V. Supposs he input
o our algorithm i the tring 3.

Step 1 In Ologll) sequental queries o ¥ deerine [[SSP)|
Our queries will be of the form “0#17«(¥))§1* " where we will vary

2 in ' binary sewrch fashion untl e home in on the exact value of
ISP oe0OD|[ Since [+ i bounded by  polymomial n . namely,
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and.then, if 80, measure its density. The mapping from the chasacteristic
Sequences to 0,1] i oneo-one except or e and cofnite sets. For a i

4ot S, the chacacteisic squence of $ and the characteristic equence of §
are the same reslmumber. However, this i o an s ere sinc the number

out that there ae only two choies or the probabilty that PH
and PSPACE diffe relative to a thus-chosen oracle—iv's cithe 0 or 1 snd,
hus, i order to settle the question of whether the probabilty i 0 o 1, we
have only to show either tha the probabilty is ot 1 ot s not 0

Proposition 813 (C) > 0 imples u(C) = 1 and u(C) < 1 implies
e =0.

Proposition 8.14_Eiter (C) 0. Thus, either PHA #
'PSPACE® with probbiity 1 or PHA 7 PSPACE® with probabiiy 0

Wo will show that the vrdict s 1.

Theorem 8.15 With probabilty 1, o random oracle separates PSPACE
fom PR

Inoxde o provethe theorem,we ned t dfine the noton of probablisic
iruite, A robbilstic crewt s Creit that akes, i ddiion o s sl
input bis spacial e of it calld rondom i, 4ach of which s asigned
ithe 0o 1 wit prabability }. The antput of  probablisi creuit s thus
e o probabity diseution

“The fllowing leima sates that » cicut family computing the paity
function corectly o more than bl of the nputa cun b made erorles at
e expense of small nresses in the dept and the e

Lomma 8.16 Let (G}t be o family of depthd, sze-(n) circits Sup-
pose that ther is o constant ¢ > 0 such tha, for every n > 1, the proportion
of the inputs for which Cu(z) # () is at most § ~c. Then there ezists
Jomily (Eo)ozs of depth(d +7), size-O(ns(n) + ) circuits that cormecty
computes the pority functon, where o and § are constants deperding orly

Proof_Lat (Ca)uzi,d,s(n), and ¢ be as in the hypotheis of the lomma.
Lot n > o s 22,7 e € (01 andy e € (01,

) =n
where for each 1 €4S m, % = £, Yi-1 © iy and deine
Fu(z.9) = Ca(Hu(z,9)) @0 @ 1. ©5)

Note that for ever € (0,1)" and y € (0,1)"+1
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By sssumption, or every B {wn, - wn),
CeWnUB) = ek UB)

Sie
WA U B) e Il 0aa
s
0 €Ky B) = Calxa(ur) - xa(un)

Cu compute 7 For overy n 2 1, the sizeof Gy i at most

5 @Y 1 DD < (o) + DA

By dfiition, thero exists a fxed constast ¢ > 0 such that fo every n > 1
the number () in the construction of Ci i a¢ most clogn. S fo every
> 1 thesie of Co i a¢ most

(uclogn) + gnicien)

For somo constant & > 0, this s at most

g,
Henc, (Co)azy i o fmily o dpeh( 1), size-0( 5#"*) i com-
putog th pasy fuction. Hoeer, i i3 impossbe due to Theore 83

e ¢ 0% — o(30/10* V1) Thug the construetion i succesfol
at evry stage. This proves the theorem. a

8.3 PH and PSPACE

iffer with Probability One

In the previous section, we proved an exponentiabize lower bound for
constat-depth circuitsfor computing tho pariy functon snd, based o that
imposaiilty result, proved theexstence of a oracl that separates PSPACE
from PH. Ono might bo tempted to ask how common it i for us to nd an
oraclo that separatesthe two classes if e randamly search for one.

"To formalize the queston, consider the charactristc sequence for sach
st for each i > 1, the th bit of the sequenco is a1 f and only If the ith
tring of T belongs tothe set. For each st 4, w(A) denotesthe haracteristic
sequence of A. Note that, for each st 4, w(4) € (0,1} The queston we
sre aakin is how dense is tho cllecion, C, of sequences corresponding to
oracles that separate PSPACE from PH. The cardinality of all the subssts
of £ is Ny, s0 ordinary counting methods do not apply to calelating the
denity So we use Lebesge meassre. Tho characteristic sequence of aset s &
el mamber i 0,1 First of all we chock whether C is measurable i (0,1,
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Hence, there exists some my > 0 such that for every n > my  successol
restriction p exist. For each n 2y pick a succesfol restricion y and
deine Dy = Calpa, Yo = p*(+), a0 o = [[,]|. We obtain a new family
of circuits (D, satisfying the ollowing conditons for all n > ny:

1. D, computescither the pariy function or the complement of the pariy
(depending on the pariy of [l (1)) on the set Yo of jy variables,
where iy = 2(y7).

2. sze(Dy) < = O((pa)).
3. Each depthe1 subeircuit of Dy is of fanin at most o

Phase 2 For each n 2y, wo pick a random rstricton  under R with

= ()12, W sy that o succods if

subeircuit of Dy i dependent on at most i, variables,
where the sequence By, s, . will be defned below.

Otherwise, we say that o fails. Let n = ny be fxed. Let Q be the prob-
ability that [lo~(+)]] < ¥5=. As in Phase 1, by Chebyshev's Inequality

(Lemma 622)
Q= 0((un)7) = o™,

To bound the probabilty that ther exists a depth-2 subciruit of D, 7 that
depends on more than 5, varisbe, wo nood the follwing lemma

Defne y = 61+ 1 (recall that the izeofthe circuit Co i bounded by ),
8y =, a0d for each 42 2, g = 1+ By
Lomma 8.2 For everyd > 1, ther esists  corutant na >y such that, for
alln > g, and fo all depth-? subcireis S of D, the following i true: 1f

every depth-1 subcincut o S has fonin ot most d, then with probabilty ot
least 1 = ol %), STo depends on ot most f varibles.

Proof of Lemma 8.2 Suppose that deptl2 subciruits of Dy are V-A
circuits The proof s by induction on d. For the base case, et d = 1. Let
2, be fxed and Lt § bo a depth-2 subcrcuit of D Suppose that all the
dept1 subciruitsof D have favin 1. We can liminate ovry level gate
by liectly connecting the input iterl of g o each gae that recivessignal
from . This reduces S to a depthe1 circui. Let £ = fon-in(S). By applying
the snalysis from the previous phase with i in place of  and 6, in place of
o we have

166> Byl i, then fanin(Sa) > By with probabilty at most

(omke) < (bemte)™ -t

for every constant > 0. S, the probabiliy n question is (%)
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. How many accepting computation path have ¢ as their r-vauc? Let
Ui be the query sisngs long 7 and by, ..t € (0,1) be the
s valn encoded n 7. Then the umber of such paths i the product
o ace () . #accs (). This nimber is odd fand oy f all the
uesses about the queries 7% correct. Ths, the paity of the numbe of ac-
ceping computatin pthof M’ il it o the umberof i
Computation paths of M on 7 rlative to B, Hence, L € OF.

Lomma 4.9 GP""T € BPPST.

Proof Let L & GPP*". We show that L € BPP®F. By part 1 of Propo-
ition 43, there exist a polynomial p and A & PO such that, for every
zew

2€Lews |y € T |y € A} i odd.

Purthermore, by part 2 of Propositon 4.6, PP7F  BPP, o A ¢ BPP. Ther
by pat 1 of Propositon 4., fo every polynomial 7, therexist » polynomial
pand B& P such that, for very u € 3,

the proportion of v € TP such that uffu € B s st loast @
12277 f € A and at most 27704 ctberwie

Lt () = () +2. Lt bo th plsmmin sch
v € 220D, s(z) = g Defne recall that
defned in Sect. 4.12)

C= (vl ve s o
1y € S5 | (zfv) o € Bl is an odd mumber).
Clearly, C € @P. Forench 7€ 5, et

forovery z € 5 and
he speciic function

az)

ve D |2y € a))
and, for each € B and v € 0D, et

o) =y € | (e v € Yl

By cquaton 4.1, for every 7 € 5, theproportion of v € EX() stistyng the
conditon
(e ety e A o HpveB)

oot et 12800 3 1RO 3 12273 = 3, and s
the proportion of v € S04 such tht o(x) = () i at eas 3. Thus, for
every 7 € 5, for atleast 3 of € 505D, a(z) i odd ifand aly i )
s odd. Note that a(e) is ol if and only £z € L and that (x4 is odd if
and only if xff € C. So, for every z € 5 for at st 3 of € B0, z € L
it and only if 24 € C. Thus, L & BPPSY.

Tntitivel, the above argumen can b explained asfollows: We are lok-
ing ot table whose rows are y's and whose column are v', where the y's
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Lot n 2 1 be fxed and It i, .S be an erumeraton of al dptht
subcieuitsof G Wo so that p suceeds 11

o 7l 2 3 and

© forevry i, LS4 S m, 1,00 40 ond .19 41, then on-in(S ) S
Otherwise, we saythat il Defne @ o b the prababiliy that 15~/ ()] <
S5 s for ench 4, 1% 4 € m, define P, t bo the probabily that S 20,
Sl 1, 0 fan'in(S117) > . The the probabily that p fis s st st

Qi Pk oo+ P

W will bt an upper bound o esch of thes terms.

I onder to evalunte Q, ot and V. zepecivly be the expectad v

a1 the varance of (8. Then £ = np — & 0d ¥ = npl1 7)< .

Chabyshov's Tnoquaiy (Lemma 6.22) sttes tha f 8 andom arisble  has

expectaion E and vaiance V, then for very d > O, the probabity that =

o than £~ i a most . By plogging n d = yA/2, E = v, and

V< i we v M

Qshss-

Inorderto vaute Py .. P, i1 €6 <. Let €= fonin(S) and

o an smumeraion of all th input lterals o S, Lot b= 0 if

i o b — 1 otherwise. I for some 1, 1< 1 < £, i)

"W divide theanalysi n tw cases depending on

Fist suppose that ¢ = alan. I onin(S, () > o the for vy 5, 1 <

5S4 () # b For each 1,1 S 5 < £, the probability that pfu) # b s
Q3R g 5o, P b ot

(1) o) e

for every constant € > 0. S,

I3

o),

(™) = o).

Next suppose that ¢ < o, I fan-in(S) > o then () = o or mare
than ks 5, 1% € £ snd plug) = b fo all th oer ' Thus P,

T Gy

Now, since m < size(C,) < n, the probabiiy that p fallis st most

O(x71/2) + ofn™ )t = O~ 4 o) = O~V

(n-th-00)
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for every € 57, 2 € L if and only if (2, (0")) € A. Since [h(0")
this impliesthat L. € P/poly

aln).
)

Proposition 4.8

1. For cvery L € P, there crist a olynomial p and a langusge A € P such

that for every = € B+, € L f and only i iy € TP | 2y € )] 10
od,

2 0P® = pO7 = o,

Proof o prove part 1, It L be in G via a nondeterministic poynomial-
time Turing machine M. That i, for every z € 5°,

2 Lif and only f facew(z) is odd.

Let  be o polynemial boundin the runtime o M. Defne A o be the st
o ll 24, ] U], s tht i n accptng computaion pch of M
on'z (tha i, o sequence = of it representing nondeleminiti mves fox
M(s) leading to acceptance, o the path it pecies, o afer the move
speifie by th | bi of + bt bore any Tther nondeermiristic move
i sttempted) ollowe. by an approprite mumber of sers. Clerly, 4 € P

for every 7 € °, the number of 1,4 = p(e), suh tht 4y € A is
Haceulo).

"I prove part 2, le L be sn aritrary lnguage in 9P There exit
nondeterminaic plynomia ime oacle Turing machine M snd » angunge
5'€ 5P sk tht, for sl , L i s only i he mumberof scep
Computation path of MP on iput 2 i an odd mumber. We will conuct
~ ondeerminitic polynomisl-ime Tring machne M. wtnesing that €
P, L N, be a nandetermintic Turing machine witncuing that B ¢ 0.
‘Aswewille i Propostion .5, P s coed et addiion. S, the uncion
14 face, thus belongs t 4P L Ny b such that rcew, = 14 e
The funcion #acey, i the paiy of fhace inth sense tat o all 5
Fsccr () s 4 odd mumber ifand oty if acen,(5) o a0 evn mumber
Thus, Ny witesscs hat B € P, Let M be the nendeterminsic Toring
machine that, o input, simultes M on 2 bt exch time M ke query
L the orace, nstead of making » qury M docs the ollwing two sepe.
(1) AP g bt € (0,1, sout th cracle nawer (where b = 0 s
nterpreed as “Yes'and b= 1 38 No') and . puth f smulation of N (.
N of ¥, depending on the choic o ) o fapt , whre i he query
tring of . () Then M rcuens t e simlaton of M on inpit 7 with the
s cracle snawer. The machine M accpt along » gven pah i and
Cnly i il tho simaltions of the machines No, Ny, and M long that path
Sccepted. We caim hat M’ witness tho I & G,

Fur each accepting computation path 7 of M’ on 7, et 7(r) b the part
of = comrspanding 0 the computaion of M on % and th guewes about
ke querics. That 1, ()i vith ol smltions of N and Ny remove.
Only the guessod values of b remain ncoded in 7. Lt ¢ = 7(r) fo some
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Stap 4" contains a east a(pu(|F1) 1 elements, stop and immedinely
declro that € SKT. (Th reason fr the pu(pa(1F)) +1 Tgore wil be made
cear blow)

End Stage  [¢'is the collection that gets passed on to Stage i +1]

The acion of ou alforithm at. Stage m -+ 1 i s follows: I some member
ofth (variable-re) ormul collection output by Sage m evaustes to being
e we declare F € SAT, and otherwise we delare F ¢ SAT.

Why does thisalforithm work? Letn repreent Fl, Snce p(pa(n) +1 5.
= polynomial inthe input iz, , it s clear that the sbove lgoichm runs
polymomialtime. I the ypothessof tep s never met,then the lgorithm
s corrctfo teason smila to those showing th corrciness of the proof of
Theorem 12

I Step 4 i ever invoked, then at the stage at which it is invoked, we
have pulpa(n) +1 disine tngs boing mapped o by the non-pruned nodes
ot the current levl of our selfreducibity tree. (Recall that by the sef:
ceducibiity troe—more specically his s  disjuntive slfreducibily ree—
ofa formula, we mean the tree that hasthe formul a s roo, and in which
ach nade corrsponding o' formula with sme varsbles unasigned has 5.
6 lft . ight children the same formula but with the lexicographically
st unasigne vainbl st rspectively to True and False) Note hat each
ofthese mappek-tostrings s o ength at most ) snce that s the longet
trin tha reducton g an output o inputs of size at most . However, there
are only py(pu(n) strings in S, As usual, 3 denotes our alphabet,
and as usual we take % = {0,1). So sine the formulas in our collection
map o pa(pu(n) + 1 disinct strings in (5+)5PA, a lust ane formala in
‘ou colletin, <l it H, maps wnder the action o g 10 @ sirng in 5.3 So
5(E) ¢ 5. Howover, SAT reduces to § via g, 0 H is satifiabe. Since H was
Gbtained by making subtitutionsto some vriables of . i follows that. F is
Satisabl. Thos, i the hypathesisof Step 4 i ever met, it i indeed coreect
o hal immedintly an docre tht F 5 satisiable: 'O Theorem 14

Pause to Ponder 1.6 ight of the comment in fooinate 3, change the
roof o that Step 4 dos ot terminae the algorthm, but rther th algosthm
drives foruand to explictly fid  satisfying assignment for F..(Hint: The
crucil point s to, via pruning, kecp the tree from getting too large. The
folowing footnote contains a giv-suay hint )

" o tht i this chn e ke s exit, bt v b 10 ich
ol e e P 1 Fonde 14 b 1 ot s el 10
T 1§ o st

+ Changs St 450t oo e C conti pun (1) + 1 o, o e
‘clements are added to C' at the current level. Ptk





index-329_1.png
s1ey)

s
19y
BToen

(ETo)

(BTvEB
Buss)

[coiss)
{cson)

cance]
(ccarag

{coHony]

(cctsq
foron)
(orLss)
(canss]
foansg]

onso)

Reforencss 315

B Bubrman, E. Spoan, ond L. Torenslit. Bounded reductons. In
K AmiboeSpe, 5. Homer, and U Schonin, ediors, Compienty
Thiory, page 83-99. Camridge Universty Pr, 1953
D) Butingion and D. Thirien: Fnite o an the fine strcture
NG oural of the ACH, 35(441-55, 1083
R Baige 3. Tl On ACC. Compatational Complesiy (1) 350-
a0, 1350
. Bulrman and T. Thieral. Tho compleity of geersting and.
cheking prooi of membersip. In Frocesdings of he 150 Anmual
Simposim an Theoeal Aspecs of Computar Sience, pages 7556
Springer-Vesng Litare Notes 1 Computer Seince 1046, Februney
i
. Bubrman and L. Torenve, P-slctve sl reducileses: A new
charsctessation of P. Journal of Compuier and Syiem Sciencs,
S(e210-217, 1996
. Bubrman, L. Tornvie, and P. un Emde Boss. Twenty quetions
' Prckcto. Information Processng Letiers, 4(1) 01204, 1955
C erg and . Ulbers. A lower b fo perepteons and o oracle
sepaation of the PPYH herarchy. Journal of Compuier and Sysiem
Scences, 5603 263211, 1005
37CA Wi probatilty one, & rdom orcle separates PSPACE
o thepolynomialtme hrarch. Journal o Computer nd Sysiem
Scienes, 3516585, 1080
3.Cai. 85 C ZPP. In Pocdings of the {2nd IEEE Symporium
‘o Foundations of Compuier Seence. TEBE, Computa Soce Prss,
Betaber 2001 T appess
R Cantt. oreon BPP and the polynomiatme herachy. nfor-
mation Prcessing Leters, 579357 241, 1996
R Clng . Cho, 0 Golrech, 3. Hartsanis, . Histad, s D. Ran-
3 The Randors Oriclo Hypothei i e Journal o Computer and.
Satem'Sctences, 49(1)24-35, 1934
37Ul V. Chataravarty, L. Homaspaandrs, and M. Ogihars. Some
Karp-Liptonype theorens based o S5 Tochnical Report TR75,
Depactnent of Compter Scienc, University of Rochete, Rocheter,
NV, Saprmber 201
3., . Condon, and . Lipton, PSPACE s proable by o proers
i one round. Jourmal of Computer and Sytem Scences 151185
153, 1094
37l anit M. Furs, PSPACE survives constant-width botlnec.
Tnterationl Journal of Foundaions of Computer Stence 20767
foyt
X" Chandrs, S. Fortune, and R_ Lipton. Unbounded fanio cicsits
and wsocitiv funcions. Journal of Computer and Syl Scienes,
302333 235, 1085,

. T Gundermans, . Hartmans, L Hemachandra, V. Sewlson,
K Wagner,and G, Wechsung. The bocean hirarhy 1 Structura
propertie. SIAM Journal on Compuiing, 17(6)1203- 1252, 1985
T Gundermann, ). Hactnani, . Hemachandrs, V- Seweison,
K Waner,and G Wechmung. The booean iraechy 1 Applcations.
SIAM Jousmaton Comptns, 18(1)95- 111, 1380
3. o amd 1. Homacharra. Brameraive counding s hard. Informa-
ion and Computtion, 2(1) 344, 198,






index-93_1.png
42 Todas Theorom: PHC P 10

Let M be a nondeterministic polynomialtime Turing machine witnesing

that' A € GP. So, for overy 2 € 57, % € Al and only i facew(z) s odd.
Define so(z) = = nd, for sach i > 1, define polynomial (2) with cocficints
in N by

i) = sica () 4o 21 3

Claim 415 For every i > 0 and cvery = € N, if = s cven, then () is @
multple of 2%, and f = s odd,then 8,(2) + 1 is & multpl of 2

‘Proof of Claim 4,15 The proot s by nduction on . The claim rivally
holds for the base case § = 0. For the induction step, et i — ig for some
o > 1 and suppose that the claim bolds for values of § that aro e than

some m €. So,

= 32 I 4 ) g 1)
A 3 )

24 _ g3 4 i)y

P a5 )1,

Thus, th claim hods for odd < s, O Cumals
For coch 7 € 2, let £, = flogp((z) + 1] and deine r22) = (s, (2)*

a0 g(x) = ru(ace (). For ever € 5, (s) is  polymomial in = of

dogren 2. Tho conficients o the polynorsal + e all nonegative and

polynemia e computable. We clam tha the function g i n 4. Thi

Can'bo seen a8 fllows. Lat G be # nondeterministic Turing machine that,on

input 7, operates s fllows:

Step 1 G computes y(2) = 020 + s £ -+ ame™, whete m.

Step 2 G computes the st 1 = (3]0 < < 2% A5, £0).

Step 3 G nondeterminsically seets 1 € |

Step 4 G nondetarministically selcts d, 1 <d < o

Step 5 G simulates M on ioput = ¢ i

Step 6 G accop if nd anly f M sccept dring ach of th  simltions.

Then G satisfos g = #aec. By Clim 4.5, the olloing conditions hald for
overy € 3

(#) 12 € A, then #acew(s) is odd, o o(x) — 1 is » multiple of 2°°, and
thus, () s of the form m2A1H 41 for some

(1) 12 ¢ A, then #acey(z) s oven, s0 () s  malipl of 2%, and ths,
o(z) s of the orm mP 1 for some
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 10€ By 10, then the probbiiy that fanin(So) > By is at most

() (%;)W <(e)" < ()"

for overy constant € > 0. S, che probabiliy n quetion s 0(;%)

(-

Ths, the probabilt that S[o is dependent on more than 5, variables is
{1 ). Ths the clim holds for d

For the inducton step, let d 2 2. Let b = (39, Let S bo any dopeh.
2 subcrcuit of Dy Call dopih-1 subcircits Fi, .., F, of  disoint it o
distinct two of ther depend on & common variabs. Let 7 be the lagest ¢
sueh that there e  disjoint depth subcircuts of . Lot F, .., F, be such
- disjont depth1 subeitcuis of S and G, .., G, be an ensmeration o all
the remining depth-1 subcircuits of S. Then

({0

Here wo may sssume that < bl To sen why,suppose 7 2 bl
Since o 1, 5[0 dspends on moe than 3 varisbe then [0 # 1, and
(ST # 1, hone of Fy .. i rduced to the constan 1. o

125 v, faninlF) < d so the probabity tht By =
(3= e and i s (3. Thes ahe probabily hat Fyfo %
ST Zr i w mon

So the probabiity that S[a depends on morsthan B variales i o).

“Thus we can sume that < bl . Let H e he set of ll vaiapes =
on whichsome ) s dependet. Since ' are difoit, the disrbuton RL-
s entical to tha of the products o173, where 2, i fubject t RY and o3
s subec t0 R, The probabilty that [l ()] > 1 st mosk

() GR) e () - (

o vy ot .S ity o591
B

and h = || H'||. Let ay, ..

0 the varisbles in ' For each 1, 1< £ < 2% let A, be the depthl V circuit
thac checks whether the input. asignment tc ' is diffcent from o, and ot

S AV (ST,

Let v = (vy,...,va) denote the variables of H'. For every i, 1 < i < 2%,
51— oy oy 30 S, = 1 cbrwin. T, ' A2, For svry
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correspond to the nondeterminitic guesesfo the “parity” computation and
the v's corteapond 1o the random guesses used In the “BBP" computation
(for teting whether  given 244y belonga to A). For each y and =, we pace &
letter "X in the () entey ofthe table exactly i th randomized guesses v
for the BPP computation on input 2y lead to an eror e, eithe (2 € A
and (zfy)hv ¢ B) or (s#y & A and (efy) v € B). For each colomn v
with 50 "X the mumbes ofy such that (x##y)#o € B s squal to the numbor
of y such that 2y € A. So, for such column v, = € L If and only If the
umber of y such that (+#3)#0 € B is odd. In each row, the eacion of
the enties having an “X” i at most 272050 Thare azo only 205D rows,
Ths the fracton of the columns with an “X" i at most 2-(*(<)) 905D, As
equation 4.1 hlds for any polynomial r, we can select 7 30 that this amount
s e than §. So, transpose the table: We'l pick v frt, then pick . Then
for more than 3 of v it hlds that 2 € L i and only if the mumber o y such
that (efu) v € B is odd. Honce wo can switch the “BPP part snd the
“parity” part a

“This concludes the proof of Theorer 45. We now show below sorme -
medis corllaies to Theorem 45. Snce BPP C P/galy by Corolry 47
and PSP = @P by part 2 of Proposition 48, BPP®" C @P/poly. Thus,
PHC oP/paly.

Corollary 1.10 PH S P/poly.

By Lemima 49, 8" € BPP®. By relaivising ©P by PH and then
applying Theotem 4.5, we obtain the ollowing resut

Corollary 411 @P™ € BPP® C &P poly.

4.2:2 PP Is Hard for the Polynomial Hierarchy
‘Wo now prove Tods
‘Theorem 4.12 (Toda's Theorem) PH C P*1
Corollary 413 PHG P#7 = '

Theorem.

Theorem 412, Toda's Theorem, follows immediaely from Theoremn 45
in light of thefllowing lemima.

Lomma 4.14. PPS” € P10 In purticlr, BPPST € pATI
Proof of Lomma 414 Lot L ¢ PP There cxis o poyvomia 7,5
funcion / € PP, and  Inguage A € P = GP (by Proposton 4.5 sich
tha, for evry 2 € B

el iy € 370D | xhy € AN 2 S0, 2)
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Proof We prove first part 1 of the proposition. Let L € BPP via prob-
ablitc Turing machine M. That i, for svery 7 € T, M acorpts £ with
probabiliy atleast 3 if 2 ¢ L and with prababilty at most § otherwise. Let
b sy polynomial nd le g(n) = br(n) +1 Let N be a probabilatc Turing
machine that, on input 7, simulaes M on input  exactly (=) tmes, and
acoepts then if and only if M accepts in & majoity of the simulations. Let
7> 1 and £ € 5 Suppose that 7 € L. Let a be the probabilty that M on
input 2 sccepta and ¢ = - . Note that ¢ > J. The probabilty that N on
input 7 reects i a most

z, (0696

ol

N CUICONIC

osiciil

= ()67

osicrigy

Z.(76-)

osisin

This is st most ()5 < (3)" < 277, Similaly, if x # L, then the
probatilty that N on = ccpts . st 2711

W view th e moves of N s being it by toing of i
Moteprecl: a e randominedsap of N, the st tw sl chios
it ety one of te by in; e coin, e “hes” for on v
S0 the Al G the aber. Then he i s of N ca b ‘el
i e s tht the i  olynomin st for vy € 5 N on x
Lones ety i, Kam;the chin eep rack of the imber of
o men s the e of computaion, o bt i s chr
Pllz), the machine makes dummy coin tosses to make the total number of
i o s o ) Pik i a1 b th e of ol 253 wich
3 TR0 and s hat N om  wih cin s 3 sckepn. Clnt, 4 € B
i o evry € B the praperdin of 3 € EPI) s het 1y € A i
Sl o ch probai thet N o acapts. S condiion 1 an 1 bt
oy

o now prove pat 2 of the propsiion. L L € BPPA with A € BPP.
T angong L b et of s probbiios polmomia e T
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e
T ——— vl cane ol -

Flg. 5.2 The andom retriction technique

the pasity function. Then we show that thee i a family of depth-(k 1),
polynomialsize circuit forthe parity functon, a contradicton. Wo deive the
contradiction i theee phases, In Phase 1, we use a estriction t sgnificandly
reduce the bottom funin;in Phase 2, we use  restricton on depth-2 circu
at the bottom to reduce the number of inputs that each of these cicu
depends on; in Phase 3, we merg lovel 2 and 3 gates. Figure 8.2 ilstrates
o the reduction procecds.

Phase 1 Let o= 1+ 1. Fo each n > 1, pick & random restriction p under
disuibution B with p = -1/, whero 2, i these of variabls of C;.
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with us 2 we present ine techniques, usually simple and algorithmic, that
burned away some of the eld'signorance and helped form the landscape of
modern complxity theory:

Usage

We intend this book as a companion for students and professionals who seek
s aceesible,alorithmically oriented, esearch-centered, up-to-date gide o
some of the most iteresting techniques of complsity theory. The authors
i theircollague Joe Siferas have test.driven the book's approsch in o
iferent courie o the University of Rochester. We have used this technique
based approach in Rochester's one-semestr bisic compleity theory course,
‘which s taken by all fstyear computer sience graduate students and also
by those undergraduates specializng or specially interested in theoretical
computer science, and in our sscond course on compleity theory, which is
aken by all second-year raduate students s thei theory “breadth” course

We found in both these course sttings that the techique based appronch
allowed us 10 impart o students a sgnificant amout of the eel and expe-
rience of compleity theory research and led to more student interest and
involvement than oceurred in esrlie course Incarnations using othe texts.
‘We expect that this will not oy beneft the complxity theory students in
the courses, but will also help ll the course’s students become prepared to
o work that s theoretically aware,informed, and wel-grounded.

AC times, we stop the flow of & proof or discusson with & “Pause o
Ponder” These are places at which we enconrage the reader to pause for &
moment and find his or her ovn solution to the ssue rased. Even sa un
sucorssfl atempt to crat » solution willusualy make the proof/discussion
that Tllows cleare and more valusble, as the reader will better understand
the challenges posed by the hurdle that the proof/discussion overcomes.

‘With some exceptions due o esult dependencie, the non-appendi hap-
s are generally ordeted to put theeasieschaptes e the stat of the book
‘and the more demanding chapters nea the end of the book,
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Chen, Yin-He Chen, Louis Deastt, Grogory Goldtein, Fred Green, Ulrch
Hertrampt, Chris Homan, Gabriel Israte, Jason Ku, Dovid Lagakos, Andrew
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ing machine, one for the base computation and the othe for the oracl.
Tntuitvly, we will show below that the tvo machines can bo combined Into
singe probabilstic polynomial-time machine without cresting much errr,

‘Note that Part 1 n the above holds reative to any oracle. Let r(n) be
an arbitracy strictly increasog polynorsil. Then thre is a polynomiabime
probabilstic oracle Turing machine D such that, for every = € 5, DA on
Taput 2 decides the membership of 2 in L corectly with probabily at et
1227705, Wo may assumm that thre exista & polynomil p such tht, for
every € 5 and everyorace Z, D on input  makes st most (1) quere.
Kb, wo may sssume that each qery of D on  is at Jeast a2 long s the
imput. We replacetheoracle A by A = {z# |y € A} and replace D by a new
machine D that, on nput 7 € 5°,simulate D o input = by substitting or
ench query 3 to A the & query 2y to A. By pat 1, thre is  polynomial-
e probabilsic Turing machine N such that, fo every € £, N on
corrctly decidesthe membersip of u in A with probability 1 ~2-70%) Let
M be a probabilistic Turing machins that,on input 2 € 5, simulates D on
input 2 and when D makes 8 query, 38 1. to the oracle, imulater N on
input o decide the oacle snsver, For very 2 € . D on input 2 makes
¢ most p{]) querie, and for evry auery  of D on faput z, N on input
4 makes an ervr with probability at mast 2% < 2-74°) since fu > |z]
and 1 is an incresing polynomial. So, for every 2 € °, the probabilty of
e path n which thecomputation of M difrs rom that of DA i a st
2", Since DA makes a eror with probbilty a2 most 2°70, he
probabilty that M makes an ervor is at most (p(z) + )2 "1, Since 7
s an increasing polynomil, for 2 suficiently lrge,the rror probabilty of
M'on z is male than }. Hence L € BPP. Since BPFSVF = BPP, clealy
'BPPPPP™™" . BPPEPP — BPP via the applicaion of this fact and, more
sencrly, the BPP bierachy collaees to BPP by nduction. 9

For . clase C, C/paly i th clase of al Languages L for which thee exist.
an A€ C ond & polynomially length-bounded function h : T — 5 such
that, for every € 5, 2 € 3 aad only if (z, (01 € A (see Sct. A5),
Wo have the following corollry.

Corollary 4.7 BPP € P/poly.

Proof Lat L€ BPP. Let r(n) = n + 1. By part 1 of Propositon 15, there
exist a polynomial pand A P such that, fo every 2 € I, the proportion
of'y € 575D for which the eqivalence,

zel =z €a,

does o hld is at most 2-514). Let > 1. The proportion of y € £
such that [(z € B |26 L e (£,9) € A doss not hald || > 1 ie t most
P2+ = 272~ 1 o there e some y € DAY such that, for
everyz €z E L e (£,3) € A Lat A(0%) be thesmalet sch y. Then,
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Proof of Fact 8.0 Let Z denotethe st ofall retrictins over varabies
7 ottt

Qule] < max(PAMIN(H o) ) > 5 ksl | (FTne) iz = 1

NGl %0 A Gilm 1] 1 € 2)
whete i subjct to the dstibtion BS~T. This inequlity hlds becase
esricting Flp to 1 doc nt dctenethe probailiy. Wo can climinate the
conditon Gy # 0 A G [y .0 from thi because we are masimizing ovee
W ot . S0,
@il

< max(P [MIN((H o) p2) 2 s ol | (Flop)pa = 1] | 1 € 2),
Whete i sublect 1o the distrbution RS-T. Then,sace H[oyp, s sn 1
of m 1V cireuts, each of which has fnin at mt £ by out induetive
Rypothess (rocal that e are i the prootof Lemma 8.5, Qo] < .

0" Fuetso
By Facts 88 and 89, we have

Qo (725) 't

This mples

ns ¥ ):(’ )""

For each i, 1 < i < [T], snd for each nonempty subset of T of size , there
ate 2~ 1 possbitis for oy sinco  has to ssign 1 o at loast ome literal of
G, Then

ey (e~

(@)

O -£.0

)
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2. F, computesthe pariy function of v vaiables.
3. sie(Fa) € P48 (un)

For each > 1, It () be thesmallest ' such that b < . Then, for sl
but fiitely many n,s(n) < (4n)*. I o) depends on more than n varibles,
then we asegn 0 to some variabls o ks it depenent on exacly n inputs.
Lt G, be the resuling ciruit. Since Flgy compates the parity functon, G
computes the parity funcion of  inputs. Then

size(Gy) £ 2M4(s(m)" = O(n'%).
s imple tht the partyfuntion cabe computed by il of dpth

(k~1), polynomialsize crcuits. This conradict to ur inducive hypothess
“This proves the theotem. Q' Theorem 8.1

8.2 An Exponential-Size Lower Bound for Parity

8.2.1 Proving the Size Bound

In the previous socton we proved that polynomislsize, constant-depth
circuits cannot compute the parity fancton. In this setion, e improve upon
the proof technique to show an exponentialsize ower bound for computing
the parity functon by constani-depth circits. Based on this bound, wo con-
struct sn oracl separating PSPACE from PH. Blow isthe iret o our gouls
i thissection, the exponentiallover bound fo pariy.

Theorem 8.3 Letk > 2. Suppose that o farily (C, o1 of depthk cireits
compates the parity functon. Then, for all but finitely many .

R ——

The key ingredient of the prof of Theorem 8.3 s the following lemma,
calld the suitching lemma, which generalizes the method we developed in
the previous secton.

Lomma 8.4 (Switching Lemma) Let G be an A cicuit wih bottor
Janvin at most ¢ Le p, 0 < p < 1, be such that pt < 1 and let o be the
unique positive ot o the equation

(i) = (v i)

Suppose that a restriction p is chosen nder the distribution RE. Then, for
cvery s > 0, with probbily at lest | ~ o, Glp s equivlent to an V-
cicuit of boitom fanin srictly less than s
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165 = 1, then D simulates N"on input = by replacing each nondeterministic
move of N by » probabilstic move. More precsly,each time N' makes &
Hondeterministic move, deciding betwecn bwo possible actions o and 4, D
seects uniformiy, randomly ¢ € {0,1), and then D selects a if ¢ = 0 and
5 otherwise. D accepts if N on z along the smulated path accepts and
et atherwie

Clearly, D can be plynomialtime-bovnded. For every x € &, the probability
that D'on input = sccepts s

oo

This i reaterthan or cqual to § ifand oy f acen: (2) 2 y. Thus, L € PP
Hence, PP 2 P#7. a

We can steengthen, Corllay 4.13 to show that not oy the polynommial
hierarchy but lso PP i included in PFP.

Corollary 4.17 PP C P

Proof By Theorem 4.5, PH € BPP and by Lemm 4.14, PPEF  PF
So, it suffices to prove that,for every oracle X, PPPPP* € PPX. It fllows
that

PP C PPITPY ¢ ppeF C P,

Again, we prove only the nonrelaivized verson. Let L € PP2PP. There xist
‘s polynomil p,  fnction / € FP, and A € BPP sch that,for cery 7 € T+,
i£2 € L, then [{y € 92070 | oy € A} 2 f(2), and (44)
itz ¢ L, then [y € 520D | 2y € A < 1) 1. s)

Let () = )+ 2. By part 1 of Proposiion 45, there exist  polymomial g
and o angriage B € P such that, for every u €

it € 4, then [[{v € S0 | ufpo € BY| 2 2000~ (46)
270, and
g A, then [{o € D | ufhu € BY| < 28003 wn

Define s(n) = 2(n-+ 1+ p(r). The It of z#y with y € S0 i ().
Define D to be the et of l srings oy, with y € S0 and € 300D,
such that 40 € B, where ' = o4y, Then D v in P. For cach z € 3,
ket dla) = [[{w| zfiyw € D) nd defne 9 by olx) = [
20, Then g € FP. For every 7 € 5, i 2 € L, then by o
a0 46, diz) > /(212901 ~ 2% = o(a), where P, @, and R respectively
dente (el als(z)), ond r(s(z)). On the other hand, if 2 ¢ L, then by
<quations 43 and 4.7
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6,1 €8 < 2, A can be viewsd as an V-A cireuit of bottom fanin 1
For cvery J, 1 < 3 < 5, G, has fanin st most d and, since Fy, ., F, is
maximaly disjont, G i dependent on atlest one variable in H. For every
187 ar ({0,11) = {un . ), 50 5, 1s n VA circuit all of whose
depth-1 subciruits Bave fanin 4t most - 1. Then fo each i, 1 < § < 20,
the probability that S,z depends on more than G-, variabls s (%)
I for very i, 1 % 4 € 2%, [ depends on at mast -, variables, then
5oz depends on at most h+ 2%y, vaiable, and this quantiy s a most
54 beesu h < 3. So the probabiity that S'[7 s dependent on mors than

i vriabies i ¢ most
o) = o)

becase h <  and  depends only on d and I. Thus, the probabily that
=010 redces o  crcit that is dependent on o than A vaiables
is o) = o).

I thecas where 5 i s A ciruit we xchang the ol o 0 nd thst of

1 and carry out the ame analysis, xcept that th circut A, checks whather
theinput assiguments on H' are identical 0, and that S, = A, A (5'ar).
Then 87 = V2, .. Q Lenmas2

By the sbove lrma, the probabilty that notall fth depth-2 subcircuita
of Dy are forced to depend on st most i, varisle i 0(13 )42 = o).
Thus the probabilty that o als is

o) + o) = ofn”)

Honce,ther exints some s > s > 0 sch tha for every 2 na thre xiss
 sucessulrstrition o. S o cach 2 na, e pick & succestl 3, and
07y it t0 Dy 10 obtin En = Dafa. Define § = B Then the following
conditons b for all n 2

1. o some i = (a4, Ex computesthe parity fnction of a et of v

vaiabls

2. size(B) < n' = O((v)). .

5. Each depth2 subcreitof i dependent on t mst § vrisles.
Phase 3 Notethat fa funcion i dependent on  vriabesthen it can be
expressed a3 an /- circuit of op fain st most 2 and of ottom fanin 3,
and alternatively a8 an VoA circit of top fanin at most 20 and of bottom
fanin 4. For each n > na, we apply one of the two comversions o ¢ach
of the depih 2 subeircts of Fn 30 tha the level2 and Ievl3 gates have
an denticl type. Then we colape the level ito one threby reducing the
epth ofthe cicui to & — 1. The resltng crcut ha size st most

Dse(En) < Pe(un)

Ths, we obtain o family of depth-(k — 1) circuits (Fuazn, satisying the
following conditions fo al n >

L b2 2 b
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‘CULL contsin at most one interval when the hypothesi lst has lenth &
a7 i the constant 1 function. For the nduction step, et d = do for some
d,0'< do < k— 1, and suppose that the claims holds for all values of |7
between do + 1 and & Let (x.T,7) be an input to CULL such that 7| = .
The mumber of rcursiv calls that CULL on input (2,8, 7) is at most.

2((k = d)alel)+ 20k ~ d)allz) + 1) = 2k ~d)(2a(z)) + 1)

In each of the recursive calls that e made, the ength of the hypotheis list
84+ 1, 50 by the induction hypothesis, the output of each recursive call
T st most 21 elements. So,the number of intervals n the output of
CULL on input (2,1, 7) s at most

20k~ d)(2a(e]) + Dras(2alic) +1),

This is r(). Ths, the clam hods for d.
Since ro = , the numbe ofinterval n the output of the culling phase s
at most r(Jz) 2 desied. Henco, L € P. El

1.2 The Turing Case

In the previous section, wo saw that if any sparse se is NP-haed or NP-
complete with respect to many-one reductions or even bounded-truth-table
eeductions,then P = NP In this secton, we sck whether any sparsc st can
e NP-hard or NP-completa with respect to Turing reductions. Since Turing
reductions are more fexible than many-one reductions, this s & potentially
‘wesker asumption than many-one completeness or many-one hardness. In
fat, it remains an open question whether these hypotheses imply that P
NP, though there is some relativzed evidence suggesting that such  strong
conclusion is unikel. However, one can achieve  wealer collapse of the
polynomial hierachy, and we do s0in thissecion.

Unlike the previous secton, the resuts and proofs for the <j-
completeness and <-hasdness cases are quite different. Wo start with the
hcompleta case, which uses what i informally known as & “census” ap-
proach. The hallmark of algrithms based on the census approsch i that
they first obtain for a st (usualy asparsese) the exact number of eements
that the set contsins up Lo some given length, snd then they explot that
information.

“The F level of the polynomial hierarchy (see Sect. A.4) captures the
power of paralle access to NP. In paticular,is known 1o equal the down
ward closure under truth-table reductions (see Sect. B1) of NP: this clo-
sure is denoted (see the notational shorthands of Sect. B.2) RE(NP). Thus,
Theorem 114 proves that if NP has Toring-complte sparse ets, the the en”
tirepolynormial hierarchy can be accepted via parallel acces to NP. However,
the folowing equality is known to hod
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Defne
M= 3 olxt)
=
There s a nondoterministic Turing machine H such that h = facc, 0
A€ #P. In particular, H guesses y € TP and simulates G on ##y. By
cquation 42, (2, and (), the owest (1) + 1 bits of th binary repre-
Sentation of h(z) represent the mumber of y € T2U) such tht 24y € A.
So, for every 7 € 5, 2 € L = the leftmost pj«) + 1 bits of h(z) i
ecogsaphiclly at let 0101, Thi imples that L s decidabl by &
polynorialtime Turing machine that makes one query to h Since L waa an
arbitrary PPEF set and h = hy € #P, it follows that PSP C P#F01 the
lass ofIngunges docidc by & polynorsal-time lgoithm with one question
(0 #P oracle. Q" Lomma d 14
50, Theorom 412 s ctablishd. Corolry 413 follows immedistely from
Theorem 412 in lght of Proposition 416,

Proposition 416 P = p*".

Proof First we show P” € P#". Lat L, € PP. There exist a polynomial p,
 language A € P, and / € FP such that, o every 7 € B,

zel e w4l =pllz) A (z.5) € A)] > f(2)

LtV bo o nondeterministc Toring machine tht, n input 7, guesses y €
S04, and accepts i and only i (z,) € A. Cleely, N can be polynomial
ime-bounded For avery 7 € 5, iacen(z) = [y € 0| () € A}
Since f € FP the membershipin L can b ested in P#*1. Thu, PP C P#Y

Next we show PP 3 P#7. Lat £ be an aritrary 4P functon. Let £ =
acey for some polymomisktime nondeterministie Toing machine N snd
1t be a polynomial that. stictly bounds the runtime of N. Then fr all =
#acen(z) < 2D, Define L = ((2,9)]0 < y < 201 A acen(z) > v}
Deine N' 0 be the nondeterministi Turing machine that, on input 7 € &,
operates as follows: N simulates N on fnput. 7 while counting in . varisbe
C the mumber of nondeterministic moves that N male slon thesimulated
path. When N halts, N" guesesa binary sring < of longth =)  C using
exactly longth p(1) — C bita. Then N accepta if and only i the simulated
the path of N on 2 is acceping and < € 0. Then for all 7 fhacen(z) =
#cc(2). Also,fo all € E° snd all computation paths 7 of N' on input
2, N slong path 7 makes exactly p(J]) nondeterminisic moves. Define D
 the probabistic Turing machine tht,on input (,3),0 < y < 2712 — 1,
operates a ollos: D unformly, randorly selecta b € (0,1), and then docs
the llowing:

165 = 0, then D uniformiy, randomly seects 5 € {0, 1700, and then
accepts ifthe rank of 2 s at most 27020 ~  and rejcts otherwise.
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@) (0.1 N7 (0.1
)7y is o minterm of Hips,

S0, Glp has  minterm of i a last s, Flp = 1, and Glp # 1, the there
s Some rsticton oy over T that is disnt. with py such that /[pey has
minterm of size t loat 3 — o] For ench nomempty retriction 0, over 7,
define

Qo] = Pelo7 (0.1)) (7" (0.1 =01
MIN(Hpey) 2 s = 1| | Flo= 1 A Galp # 1]

Then Py is bounded from above by the sum of Qloy] where o, ranges over
Al nonempey restrictons over T.
Consider

Qo] = Pe[o7((0.1) (147 (©0.1) = 0| Flo = 1A Gfo 1]

and

Quler] = Pr [MIN(HTpo) > s~ ol | Flp =1 A Galp #1]
Then Qo] < Qulen Qs
Fact 8.6 For cvery oy, Priog (0,1) N7 (01)) = 0| Gulps # 1] <
Cayer

Proof of Fact 8 In order fr Gy[py # 1 10 be e,y b 1o i
cither 0o + o achleral of G, T rder o o ((01)) 1) (101 = 0
o b, b o sl il o (0,1, S, e el
i quostion i at most 91/ (152 4 ) () 2" Fuelss

Fact 8.7 For any events A,B, and C, Pr[A| BAC) < Pr{A|C] i and only
PilB| ANC) < PiB| ]

Proof of Fact 8.7 The proof is by routine caculation. O Fct 87
Fact 8.8 Qufor] <
Proof of Fact 88

oo ) Ne({0.1)), Flp = 1, # 0,1, respectively.
Then ] = BrlA| BA C), and Fact 8. shows tht Pr{A] €1 < (1)1
Nee tht

PrlFlp= 107 ((0,1) ()47 (0,1)) =0 A Gy #1)

<PAFlp=1| Gl #1),
ecause adeing thoconditon o((0, 1)) () p7((0,1)) = docs ot increase
the probabilty that Flp = 1. Thus, PrlB| A A C] < PrlB| ). Now, by
Fa7, Qi) <A i s ths Q1) < (45

el
Fuciss
Fact 89 Qsfe] < 070
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The lemm ollows from the slghtly stronger emma below.

Lemma 8.5 Let G be an AV circut with bottom fan-in ot mast t. Let p,
0<p.< 1, b such that Spt < 1 and le s denote he unique positive oot of

s !
(1) = (- m) 0

Let F b any boolean functon and let s > 0 be abitrary. Suppose that o
rstrction p is chosen under the distriution S, Then

PAMIN(G[p) 2 5| Flp=1] <o

Proof of Lemma 85 Let G, £ p, a, . and s b o n the hypahess.
N that th sesement of the s vl hlds o 1 = 0. S, suppose
L L GG b am erameratin of l the deph- bt of
G Then G o N, G We prov thesskment by i o . The b
o i when M0 m b 1 i sontan ncion. Whic o te two
Contan fonctons G sctally s may depend on sh comen. Fo avry .
GGy and s, MIN(GI) = MIN(E) 0 Ths, he probabiy s
MIN(GTS) > » .0 regaics of te chocsof F. Hon the cim ol or

For the induction stp, et m > 1 and suppose that the clam holds for
every ', 0 € m' < m. Wo consder the fllowing two cases:
Case 1 Gulp=1,and
Cuse2 Gilp#1
Then we have only to show that, for cach € {1,2),
PAMINI0) 2 | Cae  hods and Flp=1] <. )
s to Case 1, et G’ = ATy Gyl and ' = FAGy, Note that it Gifp

G Since the condtions G, [p = 1 and F{p = 1 can be combined
. the probabilty in cquation 8.2 can be rewritien as

PMING'Tp) 2 | Flo=1)

Then by our inductive hypothesis, this prababilty st most . Thus,equa-
o 82 holds for Cae 1

As o Case 2, define Py = PHMIN(GIp) > s |
we have to show that By < a fo al 4> 0

Let H = ATy Gy Let T bo theset ofal variabes on which G, depends.
Since G s an - crcut, very minterm of G has to have a ltersl from T
Alo, since we ae consdering only p such that G [ 1, each minterm of
Gl i one exist, has o have » lteal rom T. So, split  ito the part py
that asigns values o variablos in T and the pare p; that asigns values (o
varisblesn = T Let e a restricion. As we did fo p, spli 9 into 3, and
93,100 is & minterm of G, then tho following threo conditions must hod:

O o701 #9.

AGI[p#1). Then
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o) £ (1)~ 2%+ @° - f(a) 4 192"
= [ =20 4279 fep9R 400
Je® a7 R (1~ 27K a7y
= oe) - 200 -2 R -2y,
Since r(n) = p(n) +2 and s(n) > n, 1-2~%~2Ris a loas 1§ =} >0,
So.d(z) < o(a). Hence o every 3 € £z € L i and oy f d5) > o).
Thus, L € PP ]

4.3 NL/poly = UL/poly

i th preios sections we s . umbe o reslts that comnect he paly-
nomial Nerarchy to polymomil time couning sompleity dasss, Do the
analogs of thow reuls hod for Iogspace clases? In panialty do the
logepace ansloga of PH C GP/poly (Corollay 410) snd PH € PP (Coral.
ary 419) hold? Sinc tho N, Herrchy (unde the Ruzzo-Simon- Tompa
relcivization, see Chap-) callape t NL snce NL = coNL. (e Sec. A,
e can smpiy the quetin of whether te logspace snalg o the foines
inclusion hlds o tho qusion of whether N C 0L/poly and the qustion
o whetherthe loapace anlo ofth e ncsio s he cueton of
hathee NL € P Hore tho ate inclosion, NL € LV, trvilly hds be-
Cauoe NI PL. o e s ehe islton e 0 prove N € OL/poly?

Pauso to Ponder 418 Docs NL € L /poly hold?

Tha answer to this question i i the affrmative, In fct, we can prove
something stronger: NL/poly = UL/poly.Inother words, i all nondetermin-
st logspace machines aregiven accss to adice functions having polynomial
Lengeh,then NL and UL are cquivalent.

4:3.1 An NL-Complete Set

The Graph Accosibilty Problem i the problem of deciding, or a gven di-
octed graph G and tro odes 3 nd tof G, whether s reachable from s n G.
‘We conside 4 restictod ersion of the problem i which G has no seloops,
and s e the st mock and i the ast node, where we order the nodes n G s
cording to the adjacency matrx represntation of G More precsely, e con-
sider the set, GAP, of all aya; -+ 1naziaz Gz 1003 -G,
> 2, such that the dingonal elements ayy . G e each 0, and n i
reachable fom 1 in G, where G i the directed Ersph whose adjacency ma-
trixs (1,)ch element i ay. Since GAP, tho Graph Accemibilty Problem
(without constrainke on the numbering of the stat and fnsh nodes, and
‘without prohibitng slFloope) s welL known to b NL complete, and sines &
logspace machine, given G, , 3 , can swap the narmes of the source node
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The concept f bottleneck Turing machines was introduced in the pa-
per by Cai and Furst [CFS1]. In additon to the complete characerization
51 SF, (Theorem 7.5), Cai and Furst abserve that SFs includes 47 and
sk hether any of SF,. SFs, and SF, contains the poymomil histarchy:
In Oxio4s] Ogihars obtained Upper and lower bounds for these cascs, in-
luding Theorem 7.10. Oghare's upper and lower bounds re n the cass
family MODPH, where MODGPH s the smallst family 7 of complex.
ity classes satisting the following conditons: () P € 7 and (i) for every
C& 7, NPC ¢ F, clPC € 7. ModiPC € 7, and ModsPC € F. Ogi-
hara shows that SF4 2 (L3)°7, which implis, by Tod's Theorem. 412,
chat PH C SF,, anawering the question rised by Cal and Furs, Begel and
Steaubing [BSE5] also showed some insghts into how the upper and lower
bounds shown in [Ogioda] can b tightened. The exact characterizaions of
Py and SF, and specilcase of SF clascsare given by Herasmp (Hero1],
s sl (Her0)). Hortrampf o sl LS 3] show tha the characteizations
of AC? and of ACC proven by Bartngton sid Thérien (BTSS) can b trans-
ted nto polynomialtime uniform clasees o characterize PH and MODSPH.

“There is nother applicatin of Theorem 7.2 Lat k= 1 be sn iteger. A
Tangunge L is calld k-lcallysell.reducible i there cxista a polynomia tme
orace Turng machino M that decdes L with orace L such that, for every
input = and every query y of M on inpu =, the excographic order o y s
between that of 2 minus one and that of = minus ; ., the membership of
only K predecesorsof 3 n the lexicogzaphic order can be sked. Beigl and
Steaubing [BS95) show tht for very , al k-ocaly selreduciblesets are in
PSPACE, and tht, whileall 2ocally slf.reducibl sets belong o MODPH,
some Socally se-teducibleses e PSPACE-complte. They s shaw that
her s  PSPACE complte -locally el zeducible set whose sl eduction
is many-one

“The concept of symmetrc botleneck Turing machines was ntroduced
by Hemaspaandrn and Ogihara [HOST) They observe that for very £ > 2
and cvery lngunge L n SSFs, L is <, reducibl to » langunge in coMody
by  functon that is polynonial-time computable with an orsce in PHL
Hertrampt (Hero9], see aeo (Her00) obained an exact charactisation of
SSF classs.

Based on Barington's 5 trick, Ben-Or and Cleve (BOCH2] showed that
algbraic ormulas over any ring can b valunted by strightline programs
sing ot thre reisters. Caussinus . l. (CMTVOS] e thi esult o obtain
 charactrizaton of the class GApNC! i tems of bounded-wideh branching
proggams.

“Theorem 7.2 can be applied to quantum computaion. (For a textbook
on quatum computation, seo (Gruse]) Ambais, Schlman, snd Vas-
rani [ASVO0] show that width- parmukation branching programs can be
simulated by o quantum computer with theee qubit one of which is n &
pure niil state nd (w0 others aze i completely mixed (random) tart-
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Bottlneck Tuing machines wer itzoduced by Cai and Furst [CFO1],
who showed that SFy = PSPACE. The power of Sy and s subclasss with
= 2,34 were st by Ogihra (Ogiie] nd Hertampt (er], ses
ki (i), Ogiara [Ogial, among other esls, exactly classifd SFy
s equuling the caes GOpIP, which was riginaly defined by Homachandra
and Hoene DL t cuptie the otion of et plct membershiy
sing, Hertampf ([HerT], s lso ) cxprese, e the noton of
quryordr-based clsss (HHW09), see s (HHHOT), sxact casications
o he pover of Sy and SF.

Symimetrc bodeneck Turing machines 2 wel s probabilitic vesions
ofthem are introduced an studiod by Hemaspaandra and Ogihara (HOTT
snd have ben futher investigated by Hortrompt (s, se sk (Her00).
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Brother: - And the Lord spake, saying, *First shalt tho take out the
Holy Pin. Then, shal thou count to three, o more, no less. Three
halt b the mumber thow shal count, and the mumber of he counting
Shalt be thre. Four shalt thow not count, o cither coun thou tu,
excepting that thow then proced 1o three. Five is right out. Once
the ramber thre, being the third rumber, be resched, then lobbest
thou thy Holy Hand Grenade of Antioch towands thy foe, who being
neughty in my sight, shall ] i
Maynard: Amen.
AL Amen.
Arthur: Right! One... two... el

~Monty Python and the Holy Grail

Countin is cumbersome and sometimes painful. Studying NP would in-
e be far simpler if all NP languages were recognized by NP machines
having a¢ most one accepting computation path, that s, f NP = UP. The
question of whather NP = UP is  nagging open isue in complety theory.
There is evidence that standard proof techniques can sttlo this question
neither afrmatively nor negatively. However, surprisingly, with the aid of
randomess we will rlate NP to the problem of detecing unique solutions.
In particular, we can reduce, wich high probabilty, the ntire collcton of
accopting computation paths of an NP machine to . single path, provided
hat niially there is t Jeast one accepting computation path. W call such
 reduction method an fsoltion technique

In this chapter we presen one such technique. Based on this techicue,
we prove two surpising resls relting NP and N to counting compleity
classes: PP is polynomial-time Turing hard for the polynomial bierarchy, and
NL and UL aro equl in the presence of polynomially length-bounded advice
functons.

‘The organizaton of this chapter is as follows. In Sect. 4.1, we present
the soltion technique, and show that NP is ‘randomized reducble” o the
problem of detecing unique solutions. More precisely, for each language L.
in NP, there exst  randomized polynomial-tme algorithm  sad s NP-
decison problem A, such that for every sting 7, i & mermber of L, then
‘it high probabilty the UL of 7 on input. = s an instance of A with &
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Hoene [HHOLb]for the purpose of studying sts with ffcien implict mem-
bership sets. Theorem 7.10 is due to Ogihars [Ogitdal. Theorems 7.12
and 713 are due to Hemaspandra and Ogihara (RO

Branching programs wero ntrodced n a paper by Lee Lec50], who called
Chem “binarydecision progeams.” Late the concept was sudied in the Mas-
tar'sthsis of Masek [Mas76] undor thename of “decison graphs.” Borodin ot
al [BDFPSE] and Chandsa, Fortune, and Lipton (CFLSS] questioned whether
Simpl functions such o the paicy function can be computed by palynomil.
size, bounded.width branching programs. Barington [Bars0] posiiely re-
Solvd the quesion, snd this is Theorem 7.2 Baeington's ealies ork [BacSs|
haracterizes thepower of width-3, peemutation oly polynomial i brsnch-
ing programs. In (Bark0] Barrngton shows tht the anguages recogized by
polynomiaize, permutation-only, branching programs of width les than
five are AC*reducible to  mod function

A furtherextension of Theorem 7.6 s proven by Barrington (Barsd]. Hore
the’ membership s determined by examining whether the product belongs
to 8 et of predetermined clements of & monid. More precisly, » program
over a monoid conist of it instructions and  lst of permissbl product
alucs, which i a lis of elements in the monoid. The program accepts an
input = i and only if the prodet of the monoid clements generated by the
input = according to the program belongs to the it provided. This s the
concept caled nonuniform deterministi fnte sutomata (NUDFA) [Barkd]
over faite mooid. Recogaition by NUDFA extends the concept of language
fecogntion s word problems over & monaid (tssslate each input symbol
to an clement in » monoid and compute the product of the clements). An
immediate observation that follows rom Theorem 7. i that the claas NC' is
qualtothe class of Iangrges that are recognized by s family of polynomisl.
size NUDFA programs on some moneid.

One wonders whether o fne classfcaton of languages in NC! can be
btaind by restricting the monoid i polynemialsize programs for NUDFA.
‘A moncid s aperiodic f every clement m n it stisfes an equation of theform
m* = 3 for some t > 0. A monoid is soluable f every group contained in
it issovable. Fo a group G, its loeer central sries is a sequene of groups
Go,Gi,... defined 3 Tollows: Go = G and for evey 1 > 1, G, i the group
enerated by {1510 A7' ok | by € Gi-y A by € G). A group s milptent
€3t lower centralseries converges tothetrvial group. Bulding upon exrlier
Work of Thérien [Thé81, Barrngton and Thirien [BTS8]show that ACS s the
class of Languages that ac recognize by family of polynomialsize NUDFA
prograims on some apeiodic monid and that ACC is the class of anguages
that e recognized by a omily of polynomialsize NUDFA progeams on some
solvble monoid. Barrington, Steaubing, and Thirien [BSTO0] show that &
language is recognized by a family of polynomialsze progrsms for NUDFA
on a ilpotent group ifand only i 1 i represented by  farily of polynomials
of constant dogree over  diret product of cyeic rings.
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For £ 2 2, a widthk botteneck Turing machine s & plynomial time-
bounded detepmininic urog machine M withan sy fput called the
counter and . specialdevic called the safeatoage, where th counte holde
binay ntegr oflength () o some G plynomil p ot dependent
%, and th safestorage s read/write el ha ol & mumber from
e s {1, ). For an input =, an oy input . and 0 vl d €
{81 b, 1t /2.0 denotethe vlue f th o orage when M nshes
it Computaton. Cllction V(21,81 < d < k, can thn be viewed as &

8 (1 .k}t e, s, wo will e (z,3) to denota the mapping
X enguage L i accopted by M if fo ewry =, it holds that. (e e e
howing a expunsion that assumes tha p(z) > 2, but the general cae s
milaly dear)

reLes
T 190D) o gz, 1200-30) o f(z, 1KD-200) 0 (1400 -00) o
(2,00 F10) 0 f(z, 0K 1) o f(z,0%0eD) mapa 1 to 1.

‘where the product isfrom right to Jf. Sl isthe class of anguages accepted
by bottleneck Turing machines of width .

A bottleneck Turing machine M s symmetrc If, for every z and. every
permutation ¥ over 5707, i holds that

(S 170D) 0 - f(a, 0K D) (1) = 1 6>
(Fle X)) o - o fa, @)1
SSF is the clas of ll languages accupted by a symmetric bottlensck Turing

‘machine of width k.

A probablistc widih-k symmetri bottlonack Toring machine s deined
by endowing M the powe of ippiag coins to determine what to store i the
storage-value, which turns unction  into a pobabilty distibution ove the
ot of all mappingsof {1 ...k} o tself. A lnguage L is accepted by M if
for every x and every permutation = over S0, it hlds that

2 L= Prl(f(a (7)) 0 - o e, m@ D)1

‘ProbabilisticSSF s the clasof allanguages acepted by probabilstic width-
i symmetric bottleneck Turing machines,

Branching programs were introduced by Loe [Lee50). For overy k > 2,
J-PBP can be viewed as a clas of thore languages many-one roducibic to
langunges accoptd b .state automata via nomunifom (the output depends
only on the input lngth) functions each o whose output bits i o of an i
put bi, the negation of an input b, the constant 0, or the constant 1 (such
reductions in general are studid by Skyum and Valiant [SVSS)). Barring-
ton [Bars9)] showed that fo every £ > 5, polynomiabsize widthvk branching
prograims capture nonuniform NC' and for & = 29,4, k PBP are subclasses
ofLangunges accopted by plynomialsze constant-depth circuits with mod
o2 gates and modulo 3 gates.
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The proof of Theorem 1.4 ocsss fllows. As i the proofof Theorem 1.2,
‘e wih to e o hypothest o contruc & plynomiak-time algorithm 0%
SAT. Indeed, we wish to 60 0 by expanding and pruning the sel-reducibility
trc a5 s done in the proof of Theorem 1.2. The key obstacl i that the
prining procedure from: the proof of Theorem 1.2 1 longer works, since
nlke taly sts, sparse sts e not necessarly “Pcapturable” a st s P
capturabl i it i a subset. of some spare P set). In the fllowing proot,
e eplace the trecpruning procedue of Theorem 12 with a tree-pruning
procedure based on the fllowing counting rick. Wo expand ou trc, while
pruning only duplicaes; e arge that i the tre evr becomes arger than o
Cetain olynomil size,then the vry falure of our trce pruning prove that
the formul i sadsfiable
Proof of Theorem 1.4 Let S be the (hypothetical) spase set
hard for coP. For each , Lt () denote he polynemil ¢ + . Let d bo
such that ()11 < putn)] Sincs SAT € NP, i ollows that SKTSE,S.
Let g be s deterministic plynomial time function many.one reducing SAT to
. Lotk be an an nteger such tha (V) o) < pu(n): e  iscomputed
by a deterministc polynonial.ime Turing machin, such a k indeed exists.
We now give, nder the hypothess of this thorem, & detrminiatic
polynomiaktime algorithm for SAT, via a simple treepruning procedure.
s in the proot of Theorem 1.2, et F be an input fomula, and lt m be the
umber of variable in F. Without loesof generalty, let m > 1 et the
arises of F b named ts., . Eachstag of ou consructon il pass
forward  collection of formla. View Stage 0 ss passing on o th nextstage
the collcton containing just the formula. F. We now specify Stage . Note
hat Steps 1 and 2 are the same a3 in the proot of Theorem 12, Sep 3 i
modied, nd Step 4 is new.
Stage i, 1 < i < m, assuming the collction at the end of Stage i~1
is (Fiy L R
Step 1 Let C be the coletion
{Filu = Trud, Flu = Tru, ..
il = Pl Pl
Step2 SetC'robe .
Step 3 For cach formula £ in € (i arbitrary order) do:
1. Compute (/)
2. IFfor o formla h € C* does (1) = (), then add / t0 ",
T The 155, a0 cpposed 0 the 57| that impicitly sppears i the defition
of “sptse s (cution 11,8t @ typorraphical crr Both ikt v and
“quivlnt dfmition of the s of spare et The 15| appronh i, 5 we

Wil s in Chap. 3,  bi more n-grained Howeer,the proot of the precent
Theoem works st amccty with th [5°°] deption
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It one can solve problem A using a black bos that slves probiem B, one can
ressonably say that problem A is “not much harder than’ problem B, the
g of e ot k" bing ke o b povertl d xteniv b e
of B i. Thus,reductions provide a means of lassifying the relative

28 sta 11 4 rducos to B and B roduce to A, then wo can resonably sey
that A and B are of “about the same” hardness. OF course,the closences of
the relationship betwern A and B will again depend on how powerfl the
eduction s. The more computationally weak the roductin is, th stronger
the clim we can make about thesmlarty of hardness f A and B. Over the
yeacs,  sich collection of reductions has been developed to s i clasifying
the relatve hadness f sats. In this chapter, wo define the key reductions,
mention some standard notational shorthands, and then present some com.
ments about reductions and thei reltive powes. Wo also discus a contraly
important reducton, Cook's reduction, which Is the reduction that proves
that SAT is NP-complte

B.1 Reduction Definitions: <Z,, <}

<2, (Many-one reducions)
A<B > (f € FRVa)lz € A <> f(2)€ B,
< (Toing reductions)
ASE'B <= A€ PP (s Sect. A3).
7, (Truthable reductions)
AL B > (G € FREL € PRIE0Ga, 2., 20l0(2) =
B N (e M A WA Ry
<A (Dijuncive truthtable reductions)
AB = (G € FREIEG, o wlele) =
Gl ) A (€A <= 1€ BVn e BY.- Ve B, (By
convention, when the machine ska 10 questions the nput i rejcted)
<F (Conjuncive truthtabe eductions)
AhB e (G e FROE(E0G, e wlele) =
Gl dh] A (A s 5 €BABEBA Ak EB)
(By ‘conventon, when the machine sska o questons the input i3
accepted)
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s some € U such that the minimum-weght sat of 7 with respect to W
are ambiguous about inclsion of 7.

Lot 2 € U ba fixed. Wo count the mumber of weight functions W € 2
such that the minimum-veight sets of F with respect o W are ambigi
ous about inclusion of 2. Let vy . ,up_1 be an enumeration of U — (z}
and oy, upy € {1 . R). Lot A be the sot of all weght functons
W ouch that for al 1 <'§ € D1, W(u) = v Suppose that there
& weight function W in A such that the minimum-Weight sets of 7
with respect to W are ambiguous about inclusion of z. Lat W be an ar-
bitrary element in A\, (W) and § = W/(z) - W(z). We claim that the
minimom-weight seis of 7 with respoct to W are unambiguous sbout in-
clusion of . To seo why, st suppose that § > 0. Then, for all § € 7,
W(S) = W(S) 4810z ¢ S and W(S) = W(S) otherwise, In par.
tcular, for all 5 € MinWeightSetyy, W/(S) = W(S) +5 if = € S and
W/(S)'= W(S) otherwiso. This mplies that MinWeighty: = MinWeightu
and MinWeightSety. = (S € MinWeightSety | = ¢ ). Next suppose that
5<0. Then,forall S € 7, W(S) = W(S) ] 2 € S and W'(S) = W(5)
otherwise In partculr, or all § € MinWeightSetw, W(S) = W(S) - 4]
£ 2 € § and W/(S) = W(S) otherwise. This mplis that Min Weighty-
MinWeighty ~ 5] and MinWeightSetw: = (S € MinWeightSetw |z € 5).
Thus, i 5 > 0 thon all minimum-welgh sets of  with respect to W con.
tin 3, and i 5 < 0 then no minimum-weight ses of F with respect to "
contain 5. Honce, for ll W" € A\ {W) are the minimum-weght sets of 7
with respect to W’ are unambigtous about inclusion of z. This implies that
thers i st most one wight function W € A such that the mimum.weight
sets of 7 with respect to ¥ are ambigous about inclusion of z. For each i,
1S4 D1, there ae R choces for v, S, ther are at most AD-" weight
functions W & 2 such that the minimum-weight sets of 7 with respect to
W are smbiguous sbout inclusion of 7. Thers ace R weight functions in
2, there are m choices for 7, and there aze D chces for 2. Thus, the pro-
portion of (W € Z| for some i, 1.1 < m, W is bad for ;) i at most
BERY™! _ 5D < o So, the proporton of (W € Z| fr all, 14 < m, W
s good for 7, is more than 1 - a. )

2 NP Is Randomized Reducible to US

US s the class of languages L for which there exists o nondetermiristic
polynomialtime Toring machine N such that, for svry = € I, € L If
and only i N on input = has exactly one accepting computation path (see
Sect. A.9). USAT i the st of all booean formulas havin, exactly one sais-
ying assignment and that USAT is complote for US under polynomisl time
‘many.one reductions (soe Sct. A9).
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ing state. Ths, NC! can b computed by quantum computers with all but
one qubit i completely random sarting stae.
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urique seluton, and i 2 is not & membe of L, then with probabilty [y
the output of F on 7 s an instance of A with ero slutions or mre than
one saluton,

In Sect. 42, we apply. the fclation techwique for NP to prova Tods
Theorem, PH € P, and wo alo establish a well-known extension of Toda's
Theorem. I Sect. 43, we prove that NL/poly = UL/paly.

4.1 GEM: Isolating a Unique Solution

The isolation techniqe we use in tis chaptet s often calld the Tsoltion
Lomm.

411 The Tsolation Lemma.

A weight function over it s U s & mapping fom & to the st of
integers. Wo naturally extend any weght function over U o one onthe power
set 24 as follows. For each S C U, the weight of S with respect to & weight
function W, denoted by W(8),is .« W(2). Let 7 be & nonempty fumly
of nonempty subses of 4. Call a weight functon W good for  f ther is
exacrly one minimum weight st in F with respect to . Call W bad for 7
Ctherwise.

Lomma 4.1 (The Tsolation Lemma) Let U be o frte et Let
Fo o be famiies of ronempty et over U, 1 D = [U, let
RS mb, ond let 2 be the set of all wright fonchons whose weights ar at
most . Leta, 0.< < 1, be such hat o > 5. Then more han (1 - | 2]
functions in 2 e goodfor ll o Fy . P

Proof Let £ be one family For & weight unction W ¢ 2, e MinWeightu
denote the minimum weght of 7 with rexpect 1o W, 0., MinWeight —
min (W (5)| 5 € 7), and et MinWeigiSeta dencte the e o l i
gt seteof 7 with respect 1o W, . MinWeihtStu - (5 € | W(3)
MiriVeght ). For 2 € 4, we sny that the minmum-weight st of 7 with
rspect o 1 re unambigous bout fncluion o i there exis st 5,5 €
MinWeigtSesy uch that € (51,9 U (5°\ ).

Recal that & ight function W' € 2 o bad o 7 i | Min WeightStu| >
2. Suppose that W is bad fo . Let S snd 5" be two disinet mombars of
MineightSety. Sinco S # 5" the xists some = € & such that = belongs
o the symmetric diflenceof S nd 8, 0 (51,5) U(S"\ 5). Thi, the
miimum-weight sts of 7 it epect o 1V are ambiguous about some
'€ U Converaly, f the. minmum-weigh st of F with respect o W e
‘mbiguos about ome s U, the thee i e th one mimmUTNEEh:
St o 7 wih espect 10 W, i b The, W s b i and oty i thete
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PBP, S, and SSFDranching Programs, Bowtleneck Turing Machines
Powes
Disributing computaionsinto smaler asks.
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Fig. A.26 POP, SF, nd SSF

o,

her th product is evlusted fom th ight 1 the Lef. That s,  trige
(i0b3,4) i P i ffet sy hat 15 W 0 5 lipied o she product
Che it f 0, b t e mulipied nkath product cthervise.
Progtam P acects 2 f P s  mapping that mape 1 4 smething el .
PLE(1) 71 A anginge L i acceped b polynomial-sze widh k rsnching
progtums i there sxit a Tl (Pu) s of idkh k branching programs
Such ha (1) thte exit . plynomia 7 such ha fo avery U eneh
G B, vt mont p(n) and (2) o evry 7,  belongs 1o L i and ony if
B accepts 7. The class of langusges accepted by polynomialsize wideh-k
brsaching progams s denoed by & PEP.
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Preface

Tnvitation

Secrot 1 Algorthms are o the hart of complerity thory

“That i the dark secre of complxity theory. It i recognized by complex-
ity theorists, but would be Iteraly incedible to most others. I this book,
we hope to make this secrat. crodibl. In fact, the real secet i even more
dramatic

Secrot 2 Simple lgorithms e at the heart of complesity theory,

A corollary of Secrt 2 is that every practitoner of computer scince of stu-
dent of computerscence lseady possesses the abily require o understand,
enjoy,and employ complsity theory.

“Wo relize that these secres y n the face of conventional wisdom. Most
people iew complexity theory a a accane ream populted by pointy-hatted
(G not indeed ponty-headed) sorceers stising cauldrons of recursion theory
with wands of combinatoris, while chanting incantations involving compls.
ity classes whoso vry names contain hundseds of characters and sear tho
tongues of mere mortals. Thi stecotype has sprung up in part due (o the
small amount of esoeric research that s this bil, but the steootypo is moro
strongly attibutablo o the failur of complexity theoriss to commuricato n
‘exposiory forums the centeal ol that lgorichms play i complesity thory.

“Throughout this book—from the tre-pruning and intervalpruning algo-
ithms that shape the s chapter to the query simulation procedurs that
ominate the st chapter—wo will e that proots in complexity theory s
aly mploy lgorithims s thei centraltools. I fact, o more clerly ighlight
the ol of algorithmic techniques n complexity theory, his book s orgenized
by technique rather than by topic. That i in contrast o the organization of
other books on compleiey theory, each chapter of this book focuses on one
tochnique—what it s, and what resuls and applicaions it has yielded.

“The most theilling tmes in compleity theory are when » new technique
i ntroduced and sweeps lks fxe over the fld.In addition o highlghting
the contality of lgorithms in the roof arsenal of compleity theory, wo fcl
that our technique-based approach more vividly conveys to the reader the
favor and exctemens of such conflagraions. We invite the reader to come
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Theoeem 320, whic i due o Hempspaandra ot sl HNOSOSH, ststes
hat the pynmil hiseachy colapse i ach NPAV funcion b a NPSV
Tfnemen, Can more be sid? I fuct, Hemaspaandrn et 1. FINOSOOb]
prove—aa implicily doe the poof i tis chaptar—the ionger reult that
ot polymomial hisrachy collpes I ash NP2V unchon hs an NPSV re-
vt (where the  in NPKV e “at most & disinct values on any
input), Othr papers have continued o explor wha reemens ssump-
tions iy poynomia herarehy collapcs, n pariculr, Oghars (Og964
provd that {f NPMIV Functions have NPFow\ rfinments then the plync-
mial hiraechy collapscs, where NPFoeV (ucas s tdie, under hferent
e, by Bk, Long, and Sukman [BLSAA), e e [BLSRS Slo) indicates
th s of NPHY funtion such tht o some polyneial g i hlds that
92 [[e-F(2)] < a(e]l, Nk ot al [NRRSS8] provd, fo cach b, thnt i
Q1 NP(R £ 1V fantions bave NPRY refinemens hen the paynomia -
sy colpses, Tking a0 sven broaderview, Hemaspasnr, Ogihars, and
Wechaung HOWO0) prows a sufcent conditon o when umbars of sau-
tions of NP fnctonsean b reduced, and Ko [Kos) has show o, for
e scuton type.” thei condton n ac dexcrbes evey type of ol
o reduction that holds n l elativized wrkds. Hemaspaandos, Ohars
1 Wechaung (HOWOD] sl put these cllapse esits it an itersting
pecspeciv via povin general lownes reuls impling the collpce
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The sze of the smallet minterm of F' i dnoted by MINCE). If F i the
constant 1 functon cearly MINCE) = 0.1 F i theconstant 0 function, we
cfine MIN(F) = 0. Each minterm o can be viewed as the smallest. -gate
hat outputs 1 f and only if all the value segamment i o are given. o for
any funcion £, C i ho smllst -1 cirut (10, an  of A gte) chat
computes 1 then cach -gate of C is a minterm.

“The n-ary priy funcion, 7o, i the function that maps each r-bitinput.
o the modulo 2 count of the number of 1 n the nput bit. Nt that for
every m there e precisely 21 minterms of 7, each of ie .

Wosny that o family of ciruits (o} computes the pariy unction i,
for every n 2 1, G computes 7o

8.1.3 The Main Theorem

Theorem 8.1 Forno k > 1 can the party function be computed by  family
of depthk, polynamialsie circuits

Th rest of the soction proves the above theorem.
Proof of Thoorem 8.1 We prove the theorem by induction on k. The
b case it when k = 2. Lot > 1 and It C bo the smllet depeh2 circuit
of 1 inputs that compuies 7. Suppose C s an V-A circuit. Then we claim
that cach Asgato of C has famin n s for each i, 1 < i € n, takes cxactly
one of 7, and 7 4 input. To see why, suppose that thero is an A-gate, 3y 9,

such that,for some i, 1< i € n, g akes both z and 7; a input. Then, for
every UL 1 %0, § OULPULS 0 because £, = O regardies of whethor
.= 0 0r 7, = 1. Thon, since the output gate of C is an V-gate, g can bo

removed from C. Now assume that there is an /-gate, sy g, having fanin
Tess chan . Then there i some 4, 1 < § < n, such tha neither 2, nor 7 is an
input to g, As we have aready climinstod gates in C with input fom both
a variabe and its negation, there s some = (31, .. 1an) uch that g on
Tnput @ outputs 1. Let ' be o with the ith bit ipped. Then g outputs 1 on
', 0o, Since the output of C'is an V-gate, C outputs | both on a and on
Sinco the pariy of @ is different fom the psity of , € does not compute
. This i & contradiction,

“The above cbservtion implies that for each A-gateof C, there i nly one.
input for which the gato outputs 1. Sinc there are 27~ inputs fo which C
meeds tooutput 1, C needs o have ot lesst 201 many A-gates, which implics
that the sizeof C s at loas 2771 + 1

I C i an Aoy circit, construct € from C by interchanging the abels
A and v and inerchanging,for sach vaiable , the label 2 and 7. Then C*
T the e depth and sito 14 C dors and computos the omploment of 7,
The complement has 2°1 minterms s0 i(C") > 7 4 1

For the induction step, let k 2 3 snd suppose that the claim halds for
M K2 < K < k- L Assume, by way of contradiction, that for some
integer 3 1, thereis o depth, sie-n! cireut family (G, )z thatcomputes
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aaturloxdr among the clment of = Then F under reticton p, dencted
by Flp, i the functon G oves  uch that, o evry b by by € (0,1)7,
& maph  to he value of F when the vasabes o = ¥ are ivn values
Scsonding 0 p and whe fo each 1 1< 1 £ m,  recivs the value by

Given tw, retictons , 0, Sheir product s s the rsrickion
Adined e fllovs: or ll 2 € %,

it pi(2) = a(e) =+,
1itpy) =1V

d@={ e = npmla) =1),
0if pyfe) =ov.

(a(a) =+ A () =0).

Let 0,7 be retrictions on 5. Wo say that o and 7 ace disoint if
aH({6,1)) ) 71((0,1)) = 0. We say that a esriction o suboumes a re-
riction 7 if o=}(1) 2 71(1) and 63(0) 2 71(0). We write 0 2 7 to
denots that o subsurmes 7.

For a boalean ciruit C and a retrition p, C s btained by simplifying
the circuit according to p, working fom the nput leel towards the output
level s ollows:

At the input Level fo cach varisble = such that (z) € {0,1), we replace
by p(z) and 7 by 1 - plz).

 At'an Velovel, for cach gate 9 at that level, we cheek whether it has an
input ixed 1. 1 50, the gae g is teplaced by the constant 1. Otherwise,
we eiminate all the 0 inputs to 9. If ther is o nput et o g, then we
eplace g by the constant 0.

« AU an Adevel, for each gate g at that lvel, we cheek whother it has an
input fixed (0. s0,the gate g i replaced by the constant 0. Otherwise,
we climinae ll the 1 inputs o . I there i 5o input Left o 9, then e
eplace by the constant 1.

For a function F we write F = 1 (tespectvely, F = 0) to denote that F
acts a the constant 1 function (respectivel, the constant 0 unction).

Let = be a et of variables and Lt p, 0 < p < 1, be  real numbet. Then
S is the distibution on the restrictions on = defned s fllows: For each
Variablo z € 2,

« with probabilty
)=

O with probabity 132
1 with probabilty 2

8.1.2.3 Minterms and the Parity Function. We say that a resticton o
is  mintermof a function F i Flo = 1 and for any retrictione’ G o, F[o’ %
1. Thus the minterm of the constant 1 function is the empty reseicton and
the minterm of the constant 0 function it undeined. For a resticton o,
the size of 3, denoted by [el, is the number of = € =, saisying o(z) # +

1)
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8. The Random Restriction Technique

Oracle consruction s & maor tool fr studying questions about compleity
clases. Suppose we find an oracle relative to which 3 complexity-theoretic
propety @ holds snd another oracle relative to which Q does not hld.
Then we can conelude that setling the question of whether @ holds without
assumption is very tongh, in the sense that proof techmiques that can be
elativized, such as those based on Turing-machine computation, camnot on
the own sucoesfuly resolve whether Q hlds.

It i often the case that o ofthe two kinds of aracles —oracles making Q
hold and oracles making @ filto hold-—is easy to construct, while the other
Kind is more diffcult o construct, An example o this type  th question of
whether P equals NP. If wo relativizethis question by any PSPACE.complote
oract, then the two casses both become PSPACE, and thus equaliy bolds.
On the other hand, the existence of an oracle for which the quality does not
hold s typically demonstratd by a diagonalization argument. that is more
complicated than the fewJine proof of the equalty.

The focus of this chapter is an oracl construction based on impossibil-
ity reults about boslean circuts. These impossbliy reslts are proven by
randonly xing the input bis (and 50 acs cale the random resticton tech-
igue). The chapter iscrganized as ollows. Section .1 ntrodcesthe randon
estrction technique and presens th fist cireult lower bound proven by the
technique: Constant depth, polynomial-ize circits cannot compute pasity.
Section 8.2 presents an exponential.size owes bound fo party and, based on
that bound, constructs a world in which PH # PSPACE. Secton £ is an
{nterlude. We prove that a probabilstic experiment yields s world separating
PH from PSPACE with probablity one. Section 8.4 is an application o the
technique to the quesion of whether the polynomial hieracchy s infite.

8.1 GEM: The Random Restriction Technique and a
Polynomial-Size Lower Bound for Parity

8.0.1 The Tdea

Firs ot us brifly skatch the idea bekind the techmique. Let f be a unction
and ot C o a dopthk circlt. We wish to prove that C does not compute
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<7 (Disjunctive Turing reductions)

ASTB 4 A3 vin some determiistic polynomia-ime machine M.
that on cach input accepts if and only at Least one orace query s made

and at ot one query that M makes i in B. (Note in particular that
‘when the machine asks no questons to s oracle, the input s rejcted.)

<2 (Conjunctive Turing reductions)
ASIB = ASLB via some determinitic polynomial time machine
that on each input accepts f and only ifall queris it makes to it oacle
are i B. (Nots in particuar that when the machine ssks 1o questons
it oracle,the nput is accepted.)

o, (o T educions)
<38 > A<B via some deterministi Thring machine M that for
Some plynomial g rons for all oacle in tme q(n) (vhete n i the input
lngeh) and that satisies the additional property that

V€, D)C € D = L(M®) € L(MP)).

-y (Locally posiive Turing reductions)
FZt B <> A<EB viasome determinitic polynomialtime machine
M (T s th fllowing propetis:

1 (+C:C 2 BL(MC) 2 L(MD), snd

2. (vC:C € BL(M®) € L(M)]
<y (J(truthtable redctions)

(B9 € FP)EL € P)va)|(3: L< f(jz))(En, 2, ..., 2)lo(x) =
et ek A (1€ A > sixalana() - a0 € D)
S (Bounded i bl reducions)
AhuB s GRIA <L B
Sy U/ () Toring reductions)
A rB 4= A<D vin some detrministc polynomil
chine that on each input  makes at most f(|z) oracle queries.
<&, (Many-one logspoce reductions)
ASEB (3] - function 1 can b comptad by » ogspace machine)
(iaflz € A <> f(2) B
<77 (Many-one coP reductions)
ASEVB s Aw B =9V Gf € NPMVME € A > 0 £
1 (o) € B,
<5 (Generalized Toring eductions)
A<D <> A€ 0. Notes: This s define only o clases C for which
elaivizaion ha boe defned, Clsry, 5 = <F. By tradiio, the o-
ation < denotes <3, 0 AT'B <2 4 € NP () cNPP.

Note on Combining Mochanisms and Bounds Interpretation types
(diunctive, conjunctive, positive, tc) and bounds on the mumber
of queries are often combined i the natual way. For. exampl
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For each n > 1, lot U(n) = {1, ..., u(n)}. Then for every n > 1 the power
set of U(n) represents D) i.e, each element in T4 can be viewed as
a subset of U(n). For each z € I*, let F(z) be the set of all y C U(jz])
such that (z,y) € A". By our assumption, for every z € E*, the empty set
(which corresponds to the string 0417)) is not in F(z). For each n 2 1, ot
(o) be the amly o ll h waigh functions that g o ach number
Y24 5, o potive weigh o t ot u)

Lot 2 e acitary sng. Apply Lo 4.1 with m = 1,14 = (=),
2= Z(i), 7 = F(a), a0d R = (). Thn,

 if 2 € L, then the fraction of the weight functions in Z(|z[) with respect to
i (2 s el e i g ot e b . 0

T2 Ly thon o o of o it acions . Z( ik et
o i 7)o gt e

For ovry 2 € 5, every W € (e, and every i, 1 < i £ u(ll), W) <
4z, Thus, fo every 2 € B, every W € Z(a), and every y € Uliz),
W(y) < 442(z). Define

B = {(=W,3) | W € 2(s) A1< 5 < 03(a) A
1y € 7(a) [ W) =5 A (a,9) € A = 1),

whete W is encoded as W(1)# --- #W(u((z)). Then B € US, which
can be witnessed by the nondeterminisic Turing machine M that on
nput u behaves s fllows: First, M checks whether  is of the form
Covanhet - #u gy, d) for some j, 1 < 5 < 43(z]), and some
ey 1S 1, ey € ). T the check fals, M irmedic
ately rejcis . Otherwise,using prcisly (]) nondeterministic maves, M
seects y € D140 then M sccepts w f and only if W(y) = § and (2,3) € A,
whero W i the weight fuction expressed by th string oy s -~ 0 .
e forall i, 1 <4 < ulle]), WD) = w, Since B € US, there is a polynomial-
time many.one reducion o fom B to USAT.
By the above probabilty analysis,fo every z € 5°,

2 € L, the proportion of W € Z(jz) such that for some J, 1S 5 <
(), (5, W) € B i at leas 3, and

« iz ¢ L, the proporton of W ¢ Z(Jl) such that for some 5, 1 < j <
), (5, W) € B is0.

Lot N be a probabilsic Turing machine that, o input = € 5, behaves ss

llows:

Step 1 pics  wighs funcion W as llow: Fo ench i, 1 < i <
e, N snraty endonly slci i, S ot having logih
5 T06 . them sty h o W) o e s 16 whs
< om0 oo

Step3 N pice 1 €5 < 1432}, s v N et by sing
" Bein i 2. g ) iy o v, T N 3 1
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Define

itm < allal) +1,
D812 b i

We clim that 84 i & refinement of &y for 7 under 7.1 m < (<) + 1,
hen & = Ay, 20’3 ey i rfnement of Ay for = snder 7. S, upposs
ot > g+ 3, and thu,thas A} G . Suppose tht 7 iscoret, For
each J, 1% 5 < m, I Iy = g, ). Assime gpar > ts(z). Then
o a5, 12 5 % gllz) + 1, 1 > gan(). S s oreet,for all 3,
153 (el 1, 1l i ot saisied By S. For very 5,1 €5 < () +1,
B0, 10) = 1. S0, o very 5 1 % 5 < a1 4 1 QLI (15 7 0.
e ntacvas 1, .. I s chosa o that Q. 1), .. Q) e picwise
dioin. Thus,

S0 U Qb agah+1

s

This i comradicion. So, wnas(2) > ygsya1- This implies hat if 7 i
cortct, hen all ntrvals 1 € A whose righs o e srcly s than g1
can b liminated from &y Hence, &I & reinement of &, for £ unde 1
The restofthe procedure isesenialy the same as that of Case 1. The nly
@iffrence i tha the number of slected nterval i at most (=) +1, and
s, the otal mumberofreinementa that are combined to form a refnement
of &} a4 most (k- d)a([z)+1). L. T, denotethe unioofthe renements
Gbtained by the recurive cal,

The ouput T of CULL s To U Ty Suppose that fr each b € {0,1),
Y i rofinement of Ay for 2 unde 7. Since & = 8 U Ax, by part 1 of
Fact 112, T o reinement of & for  under 7. The total umber of rcu
cals that CULL makes i 2 ~ rl)2a(z) + ).

1125 Corroctness and Analysis of the Culling Mothod. Since the
depth of recursion s bounded by k. the enize culling procsdure runs in time
polynomia i || The cortectness of CULL can be proven by induction on
the length of the hypothesis it going down from & to 0. For the base case,
1 the lengeh be £, We already shoved tha if the ongth of hypotheis list
i k then CULL works corectly. For the induction step, lt 0 < d < k — 1
and suppose that CULL works correctly n the case when the lengeh of the
Hypothesi lis i greater than or squal to d + 1. Suppose that (2,1, 7) is
given to CULL such that |r| = . In sach ofthe recursive calls that CULL
makes on put (T, 7). thelengeh of the hypothess s i -+ 1, 0 by the
nduction hypothess,che output of sach ofthe secursve call iscorect. This
impliesthat the output of CULL on (., 7 i . efnement of I

o alo clim that, fo every ¢, 0 < d < k, the mumber of intervals in the
output of CULL in the case when'the hypothesis st has ength i at most
ra(f). Agan, hi s proven by inducton on d, eing down from & t 0. The
claim corainly holds fo the base case, Le., when d = k, sine the output of
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Wo say that  language A s randomited reducible o language B, de-
ot by A uataised B, I ther exst probabilistic polynorial-time Turing
machine M 4nd & polynomial p such that, for evey 7 € T,

62 € A, then the probabilty that M on input = outputs  member o B
o at et by, and
« 2 € 4, che the probbiiy that M on input  outputs & merber of B

Using the Islation Lemma, one can show that very language in NP is an-
domited reducible to USAT.

Theorem 42 (VL € NP)[L< mnicmiunsUSAT],

To prove this theorom and other results in this chapter, we will use &
pairng function with a special roperty regarding the encoding length. For
binary strings 2,0, .., we write 2yf 2 to denote the sting con-
structed from ths expresion by replacing sach oceurrence of 0, 1, and.#f by
00,01, and 11, respectivey. Mote preciscly, the encoding is the binary string
of the form

02y Oz 100 Oy 11 - 050
Note that this pairing function saises the fllowing conditons:

ooy and sy e o+ o
1+ ¥ ol then [z - el = o .
o Forcvery 2,401+ € B, e can tecover 241+ fom £ - #2
in time payoonin n c#vk - 51

Proof of Theorom 42 Let L bea language in NP. Le p b a polynomial
and A & Inguags i P such that, o al 2 € £,

zel e (e D) (o) € 4)

Wo may asume tht oral > 0, p(r) > 1, and tht foral 2, (5,0%0%) ¢ A,
For each n > 1, et (n) be the smallst powes of 2 that is rester than or
cqual to p(n). Define
A= (@) | vl = ule) A
Gl = pll) A ww
Then A" € P and for every z € 5,

Maw e ),

z€L e (3y € B4D) 2,y € ]

Since for all 7, £,0°040) ¢ A, or all 7, (5,04050) ¢ 4"
For sach 1> 1, we can specify each string y € DA by bit pasitions at
which y has 1, e,y can bo specified via the s {1 <4 < p(m) A = 1)
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Fig 8 A depth3 cireit

leaves 1 its output node. For & monleat o, the fanin of v, denoted by
Jenin(o), i the mumber of edos coming nko . For simplicty, or  depthe 1
ircait €, we write fan-in(C) to denote the fanin of the output node of .

Let 21, ... 2o be s fixed enumeration of the varisbes n =, Let o =
(a1, ,02) € (0,1)". The output of C on input  is inductivly evaluated
aa'llows:

1108 leaf o i Ibeled by 2 (respecively, %) for some £, 1 < <, then
the output of s 11 and only f o, = 1 (reapretively, ;= 0).

2. For each nonleaf v labled by A, v outputs 1 if and only if ol i
signal aco 1

3. For cach nonleaf v abeled by V, v outputs 11f and only f at et one of
itsimput sgnals s |

4 The circuit C outputs 11 and only if the output node of C outputs |

iput

We assume that no depth-1 ciruit takes s nput o conflcting literals, ..,
2 and 7 for some variable 7.

it set of boolean variables, A restric
o boolean values. Formally,arestriction
(respectively, p(z) = 1)
2 € 2 i asignad the valuo 0 (respectively, 1) and () =
a7 s not asigned a value
For a restricton g, 0~ 1(+) (respectively, 7-1(0) and o~1(1) denotes the
so ofal € o which o assgns + (rspoctively, 0 and 1), and o-3({0, 1))
denctes 570) U o~ (1).
Let F bo a function over the vriabls of 5, and et be  retriction on
Wo assume that there s a natural order among the slements of = (that
s, i ha frt, second, otc. loments). Lot ¥ = p3(s) and lot m — |1V
Lot 11, Yo b the ctmeration of al the lements of ¥ according t the






index-322_1.png
308 B. A Rogues’ Gallery of Rductions

B.4 Circuit-Based Reductions: NC* and AC*

act
For k > 0, & language L is AC* reducible to a language A if there
exists o family of polynomial-ize Olog" n) depth circuits with oracle
ates, which that this family used with orscle A sccepts L, where an
oracl gate with m inputs contribute 1 o the depth. Furthermre, L is
logspace-uniform (P-uniform) AC® reducibe to A if ther is a logspace
(polynommia-time) lgorithm o compute th deseiptin of the ciruitfor
" given 1"

Net
For k> 1, language L is NCV reducible o a language A fthere xis
a familyof polyromialsize, O(log*n) depth, bounded funin (al A and
 gates have in-degres two) circits with oacle gates, uch that this
fumily used with oracle A accepts L, where an oracl gate with m inputs
contributes flogm] to the depth. Furthermore, L is logspace.uniform
(P-uniform) NC* reducible to A ifther i  ogapace (polynomisk-time)
algorithn to compute the desciption of the dreut for £ given 1"

B.5 Bibliographic Notes

Ladner, Lynch, and Selna’s seninal pape i tho bestsourceon polynomnial
time reductions [LLSTS] Ladner and Lynch (LL76] i the best surce on
logspace.reductions. Postve Turing reductions were introduced by Scl-
an [S1525, and Iocally psitve Turing. roductions were introdced by
Hemachandra and Jain (HI91]. Many-one coNP roductions were introduced
by Beigel, Chang, and Ogiwara [BCOR3]. Strong nondeterminitic Turing
reductions were Gntroduced by Selman (1T, see lso [LonS2). Allnder
 al, [AHOWD2] proved that if B in sparse then A<5yB — A <l B.
Caok'sseduction f due (no surpisngly) to Cook (Coa?1], though we sate
it hre (e Fg, A.) in o known stronge form. Bubyman, Hemaspaan
and Longpré [BHLGS] proved that SPARSE € RE(TALLY), from whi
R (SPARSE) = R2, (TALLY) clorly follows. REF¥(BPP) = BPP i duo
to'Ko and Zachos (K2 2acs2]. The AC? rductions were introduced by
handra, Stckmeyer, nd Vihiin [CSV34] o redctions mon fnctions
(Cook (Cooss] introdced tho NC! many-one reductions as reductions of
among function. Language versions of the NC reducibiity as wel 3 the
ACH roducbity yer introduced by Wilon (WIS, WiSo], Tn general, for
every k > 0, N1 reductions ae aa pawerful 13 ACreductions. Opi-
hara [0gi9%a] showed fo certin clacses such 4 NP and O_P that,fr cch
K2 0, the Pruniform AG reduibilty cosure and the Prunifori N1
ceducibity closue cincide.
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Pause to Ponder 4.4 Can we cxtend this inclusion in BPPSF to cven
higher lvels of the polymomial herarchy than A%

T this secton we show that indeed we can,

Theorem 4.5 For cveryk 2 1, 5% C BPP”. Hence, PH C BPP*".

The proofof Theorem 4. s by induction on k. The base case i, of course,
Theorem 4.3. For the induction stp, wo establish, for cach k > 1, that
., C BPP®" by combining Theorem 4.3 and our inductive hypothess,
5 BPP#*, in the ollowing thres step:

L (Apply Theorem 4.3 to the base maching) The proof of
Theorem 43 s reladvizabe, s, for evry ovace 4, NPA C BPPO**
Noting that ., = NPLF, s have the fllovin, whero the it inc

fon s vi the nductivly true 5 C BPPSP and the scond i via using
elatvized Theorem 43 4 the orace ranges ove all BPP®" sats,

,, NP ¢ gt
2. (Swap BPP and OP in the middle) By Lemma 49 below,
@PUPF C BRI, for very oracle A, So,

2, € B

3. (Collapso BPPPPF to BPP, and GPSF to ®P) By part 2 of
Propostion 4.6 blow, BPPPF* = BPPA for every oracle A. By part 2
of Propasiton 48 below, P = GP. S,

2, < Bep

Wo il rt prove the two colapseresulsin Step 3, tgether with character-
iaations of BPP and P, The characterizations will bo seful when we prove
the “swapping’ property in Step 2.

“The resle we prove i the rest ofthe section hold rlaive o any oracl.
For simplicit, we prove only their nonrelativised versions

Proposition 4.6

1. (The error probability of BPP computation can be expo-
nontally roduced without sacrificng much computation time)
For cvery L & BPP and cvery olynomil 7, thes esist o polynomial
and o anguage 4 € P such tha, for very € 5,

) 2 € L, the the proportion of y & B2U=D such that iy belorgs to
A tfeast 1 277000, and

)3 L, then the proportion ofy € S0 such that sy belongs to
s at mowt 2714

2 The BBP herachy collpses; e, BPP = U = BpptT
PP pppare
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7. We sssume that overy downwaed path fn C from Its output gate 0 an
nput gate haslength £. Then we divide the gates nto k + 1 levels, 0, .. k.
where the faput gates azo a lvel 0, and, for oach k > 1, the v £ nodos
are those thattake inputs from levl k- 1. Supposs that we ascgn the values
'and 1 10 some of the variables and restrict the inputs of both C and 1 10
those consstan with the asignment. Some restictons may frce all depth-2
subeircuis of C to depend on a small number of vaiables. If thare is such
a restricton, then ll the depth-2 subeircis can be smplied so that the
top gates ara the same a the gatesin C a tho thirdlovol This simplification
will produce either two consecutive lovls of A's or (w0 consocutive ovels of
Vs, which can bo collapsed to yield s oquivalent depth-(k — 1) crc

"We roquir that for any resticton, / depend on all the remainiag vari-
ables. W seatch for a retriction sequence that callapse the dopth of C to
o and simultaneouly forces all the depth-1 subeireis of C to have fanin
les than the number of remaining vrisbls, I there i s  soquencs, then
e can use one more restriction (o reduc C to & constant while keeping |
nontrivial. Now combine all the retrctions that we have identified [nto one
b restriction. Undar this combined resriction, C and f aeo iflent, which
shows that C and f were diffcent from the vry beginning.

Now the question s how to fnd restricions with desired propertic. It
may bo very diffcult o describe procisly what rstictons will do the job.
So we attempt a nonconstructve approsch. We introduce probabilty distri-
butions on restictions and prove that good restricions appeas with nonzero
probabiliy, which guarantoes that at eas one exists.

5.2 Preliminaries

Wo neod some prepacation

8.1.2.1 Unbounded Fan-in Boolean Clrcuits. An unbounded fanin
circuit over 3 se of vriables = i & Iabled, divected. acyclic graph C with
the following propertes

1. Thereis a unique node with no outgoing edges, calld the output gate.

2 Each node with no incoming edges is labeled ither by 2 or by ¥ for some
2 € 2. Such a node i called an fnput gate s wll 12 5 Lol

3. Each nonleal node s abela sither by A or by V.

4 Every two adjacon nodes o labeled difeencly.

5. Al paths from leaves to the output node have the samo lengeh

Note tha the above properties imply that our ciruit coniss of altsrnating
el o A gates and V gates We asign mmbers totho lovels o such stratifed
cicuits in a natural way: The input leol i level 0, and, for each k > 1, the
Tovl  nodes ace those that take inputs from levl k - 1.

For a circuit C, the size of , denoted by sie(C), is 45 mber of nosleal
nodes. The depth of C, denoted by depth(C), i the kgt of the pats from
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A<y B = (39 € FREL L J(a)) o o 2000(E) =
AE bl A (1€ A s € BAREBA - A c B

B.2 Shorthands: R and B
Definition B.1.For any tststrings  and b for whic <% is & redaction
type hat has cen deined

1. For amy st G, R(C) = (L] L <t )
2. For any cass €, RY(C) = {L| (GC €0)lL <t 0]}

Definition B2 For any text stings o and b or which <! is a rduction
type that s teen defind:

LASKB = ASLB S ATAT S A B = AE — AP
B

2 (AL BYAZE) = A B — &
S AL B — Ao B.

1B e sparse and ASLB then A<TB.

Al the above implications—except that A<},B = A<y,Bif B is
s et e o the e

i brd e tht 1 s cquivln o S, nd that <31 vl
i

Ny complesty cae repect reductons. Fo example, thvgh
75,8 SN e NP = P, ronsiles NP s e dmrd
TR S et

B = A< B, ond

NP = R, (ONP)

Similarl, REPP(BPP) = BPP and RE?(NP () coNP) = NP () coNP.

Some. reductions sro_powerfu enough 1o bridge the diflernces be-
ween scmingly— o abeolutdy—ifrent clases Fo cxample, SPARSE 2
TALLY, but it can be shown that RE,(SPARSE) = RE,(TALLY). As an-
other cxampl, E G EXP, but cleary (va padding) REr(E) = R, (EXP)
EXP. il toseh e gttt N <o, ey Rz (5P)
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tho integer whose binary encoding s 1, where
leading Os omitied
Step 3 N aska it aracle whether g((x,W,) € USAT. If the query is
“nsvered positively,then N accepts 2. Otherwise, it rjcts .
Letx € 5 bean input t0 NUAT, Suppase 7 € L. InSiep 1, NV on inpuc
= sleca with probabilty at least 1 8 weight function WV such chat for some
3155 < 43z, (2, W,3) € B. Purtherme, in Sep 2, NV*AT on nput
Slects each 5,1 €. (e, wieh probabity by So,the probabilcy
that NUEAT o inpus = generates n query (z,W.3) that belongs to B is st
lesat ey Defne () = 225%(). Sine or sl 2 1, n) i th smallst.
pover of 3 that i greater than or equal t p(r), or all n > 1, 2p() > ().
So. st o = . Ths,the prababily that NUSAT
iy O the other hand,suppese = ¢ L. Then,
NVIAT on 2 ejcts with probably 1. Thus, L matemasaUSAT.
@ Theorem 42

s the sring v with its

In the proot sbove, define
B = (Wi |2 € 3 AL S5 < 420) AW € 2(al) A
11y € 7(2) | W) = A (,3) € A’} i odd mumber).

Then B € GP. Ao, n Step 3 of the program of machine N, replace the
query sting by (x,W.5). Call this new machine . For every 7 € Ly the
aame probabify anaysis hlds because 1 an odd number, 30 ¥ on
input  accepa with probabity a lesst iy Fo every € L, N¥' on

rfects with probabilty 1 because 2(z) i cmpty and 0 s an even
“This implies that £ mporsue 3. Frthermore, deine T 1o bo the
probabilsic orace Turing machine hat on input 7, sequenially execute
independent simlation of N on = g(z) tme, and then accepts i  n st
leao o of the () simulaions and rejects odherwise, For every 7 € L,
the probability that T2 on input 2 rejcts s st mast (1 — 7=, Since
4(n) = 2257(n) and for all > 0, p{n) > 1 for all n >0, g{n) > 22. So, the
probabilty that 7% on input = rejecs s a most (1 ~ )7 < 4. On the
ather hand, fo every 7 € T, the probabilty that T on input 7 accept i
0. Thus, we have proven the following thorem.

Theorem 43 NP C RP®" € BPPS"

4.2 Toda’s Theore

PHC P
4.2.1 PH and BPP®"

By Theorem 43, NP € BPPS Since PP = BPPA for every oracle A
(see Propositon 4. blow) ¢ holds that A3 C BPPF.
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er=(19)oves
and that

e ki)~ Do) € B

st =

S0,

1500 0 (2,5
o oproms
Noto that[(i[1 4 <2° A = (L 2)l| = (5]1 < § 20 A (7,0(2),u) €
Bl Also, {511 < 2% A ((z,a(n)) ) € B} i an odd mumber if and
only f (z,g(2) € 4. o, we have

aeo o1 o0

e

Thus,
vy zEL,

S oo fmar) = {2 Erek,

Honce, L € SFs El

7.3.2 Symmetric Wideh-2 Boteleneck Turing Machines

We now consider symmetric bottensck Turing machines. They e deined
by allowing bottleneck Turing machines o exocute thei asks in asbitrary
order, and by demanding that, o matter what the orde i, the product of
the tasks (a3 mapping) fxes 1 1f and only if he lnput s to be accepted.

Wo will show that width-2 symmetric bottleneck Turing machines are
much weaber than widh-2 bottleneck Turing machinos, s ovory language in
SSF i the disjoint union of a languago in NP and another in GP.

Theorem 7.12 For every L € coSSFy, there exist disoint sets Ly and L,
Ly NP and Ly € 0P, such that L= L1 U L.

Proof Let L € cuSSF bo witnessed by  polynomial.time computabe func-

tlon / and o polynomial p such tha for every 7 € B and every permutation
7 of 570D, i holds that

£ €Tem (Ko o ) -1,

or squialently,

=€ L (e m e o SO0 ()
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PP, P, and SPP ~ Gounting Classes

Bucground
PP was intoduced in the work of Smon [Sin7S] and Gil (GHTT. C-P was
nteoducad (thosgh hok igned & nama) by Simon Sim7S), who sbe proved
i ya s

[ —
S S8 o thit Mt i PPt hers Mot = {1/
e e thn bl the bt eralc et C.A
el ot i b kol Eno s . oy
S o e To Todt) s Ot O e i, s
ey canmca compite e o P Pt PP - promie e
e ot Moo, o s 0
irnie HGLAGH hov houn o PP s maurl ot s

Setad Pt nd Thorems

TR e
5 USCC e per Chseace
5 Botk GoP s o v s o e postive Tain e

Town)
4 PaniformNC!(C.P) = PuniformAC'(C.F).  (Ogita]
5 [bsss)
o o]
7. PP C BPPE-F ¢ P (oo Chap )
5 orCPP. o]
9. There o an race A such that PP  PPA {Beis

10, PP iy cowd dowmiard unde truttale redctions. (s Chap. &

n FFKos]

12 G PGP, (PR K TTO2

13 PP w PRSP o PP, (FEKOLKSTT)

14 There cxists an acied sch that SPPA srcly conains PHY et PIY

o ot collge, oo

Fig. A20 PP, C.P, and SPP—past il

Known that cither implis the other. The basrir to proving “UP = NP if all
NPMY functons have NPSV refinement” is that NPSV function, thovgh
possesing at most one output, may potentially output that one output on
‘many accapting paths; thus, the computation i in o way UP-lke. Regarding
the other direcion, though

UP = NP = all NPMV functions have FPU¥ reinements,

there seems o be no abvious way to use UP = NP to obtain NPSV refine-
ments of NPMV functions.





index-71_1.png
33 Uniquo Solutions Cllapen the Poypomial Wierarchy 57

eatsying assignment it obtained and is about to output islexicographically
ernller than whateve saisying aslgnmente it many sllng paths may have
Sbtained.

To put into context the strength ane neods to cull satisfing assguments,
ot that machines seemingly a bit stronger than NPTMs can cull satify.
ing ssignments unconditonaly, and determinietic polynomial-time machinos
cannot cul sateying sssignments unless P = NP. Both these clime, s for:
malized in the following propositon, are immediate. In partcular, part 2
holds since an FPN" function can aven, by profix search, find tho lexico-
araphically smallst satsfing assgnment of  given formula

Proposition 3.17

LP=NP = ther is a polynomialtime computable functon | such
that

(¥F € SAT) [/(F) is o satifying assignment of F|,

2 There is  function { computable by a polynomil-ime machine with an
NP oracte (i, | € FP™) such that

(¥F € SAT) [1(F) i o satifying asignment of F|

Our caso, whether NP functons can cul  singl ss

dying asignment, is
intemodine (pethaps not stictly) i logica klhood between the cae of
FP functons and the case of FPVF functions.

Curiously enovgh, thogh the main tesult of this section dos not seem on
it face 40 ba about semi.fensibl sots, 3 nondeterminitic analo of the s
fosibl set plays a cenral rel i the proof. In particular, the tournament
divide and conquer approach of Sect. 3.1 il b central here, though n the
Context of nandeterministic selctor functions. Firs, thogh, we tate some
denitions.

“The class NPMV captares the notion of miltivalued nondeterministic
function computation. The claes NPSV captures the noion of singlo-valued
nondeterministic function computation.

Defnition 3.18

1 Let f be o mulielued finction.st-f(s) denotes the set o al valesthat
o an ouput of (2). Notethat  1(z) hs no utput the st/ (z) =0.

2. We coside any given nondetermniati polyramiab-ime machine N to
implicily comput a (potentilly patia) mudivabied function, namel,
e function fy defied by se-T(z) = {y] some compuiation path of
NG&) outpts ). NPMV denote the classof funcions omputed m this
sense by nomdeterministic. polyromil e machies,

. A (potentally prtiad) mullieluedfunction / s sid o be sngle-velued i
042 Jst-1(2)| < 1. NPSV denote he slass o al single slusd NPV
fonctons,
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P, P, and SPP ~ Gounting Classes

Atermae Defntion
N langusge I i in PP if thero exsts o plynomial g and a poynomiaktime
Prodcate % such that, o each .

el = Iyl = o) A RG] 2 200

A language L is in C.P i thee exiss o polynemil g, o polynomiakime
Runcion 7, e plyrmialtre predicate 2 such that,for cach =,

zeL = Iyl = aleh A Res ) = 2.

A diflecent defton, whic agan yikd the same ca,alows s {0 fx the
function 1 tc b a o a very simple fom.In paticulr, F uch tht, Lt ach
(G s an lternat defmion i which the scceprance” cardnaley i et 40
5 exacly haf ofth total umbr of posiilie: A anguage L s 1n C-P it
there it & polynamial ¢ a1d & palynomia-me predicats R such tha, or

eachz,
i) A Rz} = 20007

A language L s in SPP if there exists a palynomil g, a polynomik-time
function 1, and & polynomiak time predicate A such that, fo each 7,

1z e L= li(y] vl =a(le) A Rz, )}l = S(2) and

2. 2¢ L => ity ll = o) A Rz 9] = 1) - 1.
A diflerent definition, which again yields the same clas, allows us o fx the
function o be aof & very simple form. A language L i in SPP i thre exists
= polynomial g, polynomial, and  polynomiaktme predicate R such that,
for each 7,

Lxel = iy

2 2L = Il

el e Iyl

el A R
alel) A Rz

Fig. A10 PP, C.P,and SPP—part 1

We need some natural way to speak of reducing the number of outputs
that  function has. Refnemuent captures thi notion.

Defnition A4 We say that @ mulivaued function f s a reinement of
‘mltivalued function g §f

L () st-f(2) = 0 = setgls)
2 (42) et 1 (2) € sovg(a)].

Intiivel, o reinement of a function i the function except on each input
some (but not all outputs may be miseing. Note that an NPSV rfinement
of g in g with, on aach input, ol but ane sutput removed. The question of
whather all NPMYV funcicns have NPSV refinments iscenteal in Chap. 3
"We note that whether all NPMV functons have NPSV reinements seems
o e a diflerent oo than, whether UP = NP. That s, it is not currently
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sepa. Lot K (implicdly, £ = K/()) bo ne k' fo which compltion doss
Ccrur Lot £ danote the (1, ") eleman of Q. Notie that by construction
(namely, the construction's choic of 3) none o the 2 advicsrings of
Lngth £ when given a5 advice to N )—squivalenty to Ny —yields, st
Jngeh £, L= T particla, we have sh flloving o clims,

1] = €, thn for cach et ¢ advics s, s either N (Gier )
ejocts (e e € L) o o some lenghh £ sing + (hat i, xcogiaphi
cly el rete han g hold h (1)) aceps et + ¢ L)

218130 = 9T, then L= iscmpty but I each advice sring y € B
her i an = € B such that N (5. acopes.

Thus, L  L'/n. This comradictsous suppostion tha L & NP/n via NP
langusge L. Q_ Claim 315
Q Theotem 3.13
I fuct, it is ot haed to modify the proof of Theorem 3.13 to yied the
following more genersl clam. We lesve the proof to the reader. (Hint: Use
the same “large gape, and brute force’ short strings” technique used in the
proof of Theorem 5,13, but modify the gape and the time complexty to be
Sensitive to the ime bownd h(n)

Theorem 316 Let () be any reusive function. Pl
DTIME[H(n)}/n.

3.3 Unique Solutions Collapse the Polynomial Hierarchy

A contral focus of computational complexity theory is whether large col.
lectons of computaional abjects can be thinned down. Tho Isolation Tech-
nique, the focus of Chap. 4, provides a probabilstic approach to his thinning
process. Tn this soction, we approach the issue of thinning from » different
perspective. Wo ask whther, given asatsiable boolean frmula, nondeter-
ministic polynomalime function can cul a single sasying ssignment from
it so of satsfying assignments. We'l soon dafine exactly wht is mean by
 nondeterministic funcion, and wil see that if this thinaing could be done,
then the polynomial Nierarchy would collapse

Nondeterninistic polynomialtime functions can easly i al satsfing
ssignments of satsfiable formulas. Thus, we have the curious case—which
st st may even seom paradorical-—that i is easie to find.al solutions
that to cul out ane solution. This is not a paradox. We are dealing with
nondeterministic functions. When they are multivalued thes various values
appeat on disinct paths in a potenialy very bushy tre (formal dofinions
follow soon). So smply taking the smallet output and discarding the rest”
cannot be done in any obvious way within the pover of nondeterminitic
functlons, a5 an Individual path has no obvious way of telling whether the
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Porel ~Semifeasible Computation.

Powe
Seri et computatin.
Detnition
ther is & polmomis e 2.ary fnction £ such that
[ {L e grhytrighvey Ayl ) ....q}
6 AT A S e 2
Buckgroud

“Th Pdctive sts were ntroduced by Selman [SeT0Se2b Sesze] as o
polynomialtine snalog af the somk-recurive et from recurive fnction
ey ioct] The NESV-selctve sots were st studied by Homaepasada,
Nk, Onihar, s Seman (HNOSO6b]

Semple Language
For sy rel mumber 0.< 0 < 1, the et cut o o  Peclctiv et where the
et cut of & mumber in the range (0,) s the set (bbb by | £ > 070>
bbb bu) nd Obubabs b detes th binary ocion denntad by the
ven .

Fig. A22 Pac—part ]

In the 19606, Jockuich [Jocd8] st studied semi-membership lgorithms,
by studying the class o languages—the semi-secursve setshaving recursive
selecto functions.

‘Around 1980, Sclman [S6170,Se520,Sel528] inroduced the P-sclctive
sote—the claa of sets having polynomial-time seector functions. Selman
and other resarchers obtsined many fmpartan oundational resuls (Se79,
Sel§2a,Sel525,Ko83). There followed » halfdecade i which reltively
e attention was paid to.the Pselective sets. Then, atound 1990, there
was an sbrupt and intetise renewal of interst in in the Peselectve sets,
In o furry of progeess (suveyed by Denny-Brown, Han, Hemaspaanda,
and Torenvlet [DHHTOH), longstanding open probiemss were resolved and
new variants were itroduced and explored. Of partiular teres 1o this
ook are the NPSV.selective sets of Hemaspaandra, Naik, Ogihars, and Sel
man (HNOSo6|

Defnition A5 A set L is NPSV-selective i there is o function f € NPSV
such that

L (a,9) et (2,0) € (5,9}, and
2 () ML %0 = (oot (2,3) = )V set-f50) = ().

The motivations for studying slectivity are varied, One motivation it sa
 relaxation of P. Given that membership in P isopen fo a wide ange of i
portant ses, it s naral o define enerazations of P and s whether these
eneralizations capture such important sets. A grat varity of such classes
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I every NPMV function has an NPSV.reinement, the h docs. Thisreine-
ment sutsfios part 2 of the lomma.

Suppese (3f € NPSV) (vF € SAT) [/(F)
Lt 7 be one sch /.

Lot € NPMV, vin functon-computing NPTM N, Wihout e of gn-
erslity o N, bo such that paths that output values re (slwaye) sccepting
paths (i, tholr final stato Is an accopting state), and parhs that do not
utput valucs are (slways) rejocting pachs (L., thel final sate i not an
accepiing tate; since N, is a funcion-computing machine, this addition of
accaptingfinal statos may seem pointles, but n foct it will b useful n letting
s employ the machinary of Cook's Theotem, which inks accepting paths to
satsfying asigaments Let fooox nd hcooi be s in Theorem 322, We now
five an NPTM N computing o NPSV refnement of g. On input 7, N deter-
minitially computes foook( N, 2) and then nondeterministicaly guesses &
path of NPSV function /. If aong our gucssed path 7 has no output then
e will make o output along the current path. If lon our guessed path
7 docs havo an output, cal it then we along the currnt path first. check
Whether a i » sutsfying asignment of fcook( Vo 2). 1 a i not  saistying
asigament of fcoox (N, ) (s strange situaton that might In fact oceur,
due to Lemma 320 part 2 being slent on the isus of what / dos, asids
from having at most one output value, when F & SAT), then we mak no
output on the current path. I o s  saisving asigoment of feoox (Vo ).
then on our current path we doterministicaly computo Acoo (N, 2,a)— call
thi vl path—and then we deteemisicaly compste what vale i output
song computation path path of the computation of N(z) and output that
Value aon our current pah. K3

Wo will s two ky lemmas—Lemms 8.25 nd 3.27—and one new dof-
itin in the proof of Theorem .20, The new definiton extends to partal
Hondeterministic functions the hotion of semi-fessible computation.

Defnition 3.24 Lt F be any (posiby patial, possbly multivalued) func-
tion class. We say a set L is F-sclective f thee is o maltivolued function
1€ F such that

L (a,9) et (2,9) € {9}, and
2 (r)laeLVyel) = 0 fseflza) C L]

atsying asigoment of F).

That i, slector functions, in his gonerlized sonse, (1) never choose strngs
that acé ot among thei arguments, and (2) if a lesst one of the function’s
arguments i in the s then they must chooso at lewt one acgument snd
they st choose o rgument that s o in the set. Note that what I8
typically refrre toin the iterature by the notation “Pelectve” (1., the
somifeaible) would be referred to s FPyueloctive” were one to rigilly
follow the notation of Defiiton 324

Lomma 3.25 NPSV-sel () NP C (NP ) coNP)/paly.
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Thus, £ € SAT < h € SAT, and so by discarding  but leaving in A,
e do 7o damage (o our nvarian, cquation 13, So by squations 1.2 snd 1.3
we seo that F is satisfable i and orly if some formula output by Stage m
s satifubl. As the formulas output by Stage m have 1o free variables,this
just means that one of them must evaluate o being true, Which i preciely
what Stags m+ 1 checks.

“Ths, the slgorithm correctly checks whether F is saisiable But s this o
polynomil-time algorithm? [F) willdenote the length of F, L., the number
of bits in the roprosetation of F. Let [F| = p. Note that afer any stage
there e at most gt + & + 1 formulas in the output colletion, and ¢ach of
these formulas is of size at most . This sze clam holds s each formula. in
an output collction is formd by ane or more assignments of vsiables of
' to being True or False, and such assignments corainly will no cause an
increase in longth (n & standasd, rossonable encoding). Wo will say that
string 5 i a ally siing exacly f s € 1", Th pt + k + 1 figure above holds
s (i to the fnal pat of Step 3 of our algorithm) we output at most ane
formla foraach tally string to which (n + k-time function) g can map, and
even i g outputs a 1 on each step, g can output in p +  steps o tally sring
onger than 17 +¥. So, taking nto account the fac that the empty sting s &
(degenerte) tally sring, we have our pt + £ + 1 igure. From this, rom the
specication ofthe stages, and from thefac tha g itselfi  polymomial-ime
computabl function, it fllows clarly tha the cntir agorithm rons in time
polynomial in [P )

T the proof of Theorem 1.2, we sed slfreduciilty o sl inta o each
member of st of formulas, and then we prined the resuling et using the
fact that formulas mapping o non-taly strngs could be liminated, and the
fact that orly one formula mapping to a gven tallysting need be kept. By
repenting tis process we walked dow,the slfeducibiiy tre of any given
formula, yet we pruned that ree wll enough t ensure thatcnly a polynomial
umbe of nodes had 0 be examined t each lovel of the tre. By the self
reduciilty troo—more spacifically his s a disjuncivesefreducibilty troe—
of a formula, we mean the tre that ha the ormula s t root, and in which
each node corresponding to & ormula with some vaisbles unsssigned has as
3 el s rght children the same formula. but with the lexicographically
first unassgned vaiable set. respectively to True and to False

I the proof of Theorem 1.2, we wore grealy helped by the fact that we
‘were dealing with whether tally set are hard for NP. Tally srings are easily
identifiable as such, and that mado our pruning scheme straightforward. We
now turn 10 slightly more dificult case

Theorem 1.4 If tere is @ sparse set that is <5,-hard for coNP, then
PP,

Corollary 1.5 If ther is  sparse coNP-complete et then P = NP,
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L NPSV, and NPMV - Dotorministc and Nondeterministc Funerions

Power
Functon version of P and NP.

Deaiion
P denotes the cas o (single-valved, posibly paril) functions compuied
by determinstc poynomia-ie Tuing machins Gven o nondeterministic
polynomial time Turing machine, ve may v 1t & compuing o (posily
Fartia possibly mulivntsed) oncto s flows Each rejecing path i viewed
K ukping o el Each sceeptong path i viewe s ootpuing whatevr
Vit has wrtten on s worktape. The machine, on mput 2, maps from
271 the st of il valos tha re a utput of s becopting computation
Dot These o il such unctions i denoied NPAIY. The cas o all NPV
Fincions tha on o pu ke e more. than ane v i dencted NPSV.
se7(2) donoen {a | a & an outpat of F(2)). Wo say that & mulcivaluad
Fincion 1 refinement of muliaisd function

TR (5 = 8 e sta(s) = O], nd
2 ()l J2) € soe)]

Background
NPSV and NPMV wer introdcd by Book, Long nd Seman [BLSS4,BLSS5),

Sampe Functions
et v roprosen:the funcion sch that se-fexy(F) i oty f F i st
bl o s a | 0 1  soiying awignment o F) 1 F ¢ saisisle foxr
NPV,

Selctd Pcts and Theoroms

T FP C NPV C RPhY.

2 PLNP o P S NPSV, (o [St00)

3. Forevey £ 3 1, PR = PUEY and DI = PP, FHi0so7]

4 W evey NPV function has s NPSV e, thn PH = ZPP"
(e Chap. 9

Fig. A21 FP, NPSY, and NPMV.

A.14 P-Sel: Semi-feasible Computation
thete is & polynormial-ime 2-ay function / such 4
o ench 7 and y it olds that (3) (2,1) € (,4) -wi}

Pud={L
0 ) NLA0 = JEn €L

P denotes the clas of ses that have polynomialtime membership o
orithme. Psl, the class of Poslective set, denotes the cass of set (hat
e polynomial-ime semi-membership algorthass. A semi-mombership al-
gorithm fo a set is & function—calld . selector function-—that, iven (w0
Inpute, choores one that i “lgieally more likely” (r, to be more accurate,
logiealy o ess ikaly") to be in the et n the sense that if exacly ane of
the o inputs s in th s then the algorithm chooses that nput.
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Note that there is  function f € NPMV such tha, for all F € SAT,
ot (F) conssteofall Fs suifing asignmens.

Our otion of Whinring" & mivalied function is the standard one:
sefinement. A reinement of multivalued function f & & function  with the
Came domain axd contining & subet (possibly sonpropr) of s viles.

Definition 3.19. Given mulialucd functions § and g, we say g i o efine-
ment of £ f
1 (v2) setg(e) = 0 <= set-f(z) = 0], and
2 (42)fe-ale) € set ] 2).
We now can stat the main theorem of this setion. If fo each NPMV
functon there xists an NPSV funcion that s  tenement of the NPMYV.
function, then the polynomial hirarchy collpses quite dramaticaly.

Thegrem 3.20 I ali NPMV functons have NPSV reinements, then PH =
2PP

Since ZPPA € NP fo al A, we have the ollowing corollary.

Corollary 3.21 If all NPMV_functons have NPSV. refinements, then
PH=N

Lemma 323 connects the bypothesisof Theotem 320 to the squivalent

ypothasis that nondeterministic polynomiak-ime machines can culla single
ifying assignment fo any input satisfiabe formula.

Wo will noed the following famous result, which wo state withont proof.

‘Theorem 3.22 (Cook’s Theorem) Let N, be  standard enumeration of
NPTMs. There is a function Jcook € FP, mapping rom stings to boolean
Jormlas, such that
1. (90 (92) [Nifz) aceepts &= feook(Ne2) i satisfiable],
2 (3acoox € FP) (%) (¥2) lacoor fooox (i 2)) = (No ), and
3 (3hooox € FP) (1) (=) ()i @ s a satisfying assgnment of
Scook(Ni2), then hcoow(Noz,a) owtputs an accepting computation

Leomma 3.23 The following ar equivaent

1. Every NPMY function has an NPSV rfinement
2 (3f € NPSV) (¥F € SAT) [f(F) is  satsfying assignment of F|

Proof Consider the NPMV functon h dfined by

St h(F) = (o] s stisting ssignment o F).

Ve e /(F) here s shorthand, o thos it on which F € SAT, for the
gl slament i th ane-<lemen s tha comprises . (F).
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where ¢ <,
B+ 1= =8, 1)

By definiton of r, for all y € S0 and s € Ay, the precson of the
probabily that T on iaput (z,5) ovtputa s s st most (2. For all L € K.
@0 (~1,0,1). Thus, for every &, 1 < 1 < M, there exio some o (not
necesarly posiive) intege hy and some pasitive ntege du such hat
B This mplies that € = 2 for some odd (nok necesarly positive) integer

and some posiive iteger Do > M. Noto that 1 -y, -, 0. This fs
because i 1~ ay, ~ ,, = O then by cquation 7.4 we have @'e| = B, = 0,
contrdicton our sssumption that j € K. So. the term (1 ay, - 5,)C
Sppeting in cquation 7.4 can be written as 4 forsome odd (s necessrily
Dosiive) integer H and some posiive fneges D > M'. Furhermore,
2 fo some odd (aot. necesarly positive) integer A’ nd a positive nteger
B < r(iz). Now wo have

ince Q'

0y our suppesicion,

HH P s H
s ™

@b o

Since both H' and H are odd integers, the mumerator 520~ 4 H is not 0
unless D = D' So, D = . Nota that D > M’ since i the product of M
terms, none of which belong to {-1,0,1). So, if M"  r((z), clesly, D # .
Thus, M" < r(z]). Ths, (v holds.

Now we conside the complexity of testing (+) and (s2). Deine

T

{(ai )1 <4200 -y <o <300 5

et e 2 1}

{13 12209 0 1<

P
itk

G i b i b 0.,
e e e

Prl (e, = verl ~ Prlf (2,30 = sl = ey <= a(a,i ) =0,

Eo

‘where . denotes the sring in 50D having ank i.For cach z € 5* and each
nonempey J € {1, ., 24020} having cardinality at most r(z]), deine
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T amd MIP (Intoractive Proof Systoms)
Pover
Probabiltc veifiestion

Deéiniion

there s verifir 1 and prover P such tha for every 7,
i holds that (82 L, th the probgbilty tht ¥ on s
17 = { 1 [sccopts with prover i greter han 3 and (4} 1= € L,
fhen T any prover 7, the pobabily that V on = ceepts
[ prover P s ks tham 3
hre cxist some & 2 1, & kcommunicaton-tape rifer
Vo provrs P P such that o every 2, i holds
o ()1 2 € L, then the probabily that o0 acepts
[provers P P s greser than 5, (51 % € L,
hen o any provers P, P, the proubilcy that ¥ on
e accepa with .. 14 e than

sap = o

Badground
T wa studicd independenly by Babai (BabS5)and by Goldwasscr, Mical,
nd Rackoff[GMRS, with diferent el an teminclogy (with Daba i
particla dening th'cacs AM, Arthur Merlin). Thediffence between thess
v models i he reaoment of th <o tose of the e, which re st
o the prover in Bahars model and kept seret i Gldwasser, Mical, and
Radoffs mordel. Goldwicer ond Sipsr showed that thss tn models are
cauialent GS89). MIP was nsodced by Ben-Or, Goldwaser, Kilian, nd
Wiierson [BOGK WSS

Selctd Pacts and Theoemns

T NPCIP. (oMRs9)
2 PrCIp, (= Chap. ©)
3 1p = FspacE. (o Chap. 6
Tt SNexe. (e chap
5. With probabiliy on rlative o  random aral, TP and PSPACE e

eoe o)

Fig. A25 1P and MIP

A.18 PBP, SF, SSF: Branching Programs and
Bottleneck Computation

A it baning progrm e vl ... 2o n o qunce P
6 o o s 3 % i e

1< <nma

2 15 g o maing of (1, ) ol
Th tils (i, ) te calld nstrcions, Glvn o bitting 7 € 5,

whote n bits we wil Teer 10 2 24, 73, ., % (it % is theconcatenation
217 %) the product of P with espect to 7, deated by PIz), is
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Since x € L by our sssampton, thismplistht for sl 5, ither Qo]
o Thagr...atyx o = 0. Wo il showe that if (1) doos ok hold, ther ()
holds- S tha (1) does ot hold, ., or very € (1. M) \ K,
a4 0. Then, Tl a4 # 0. So or all 8 € 5, Qo] = 0. Wo
show below thet M < 7). Then (1) holds or n arbitrary emumersion
S dat:ofthe merbers of K.

Note that, for every € (1, . M), o + 8] £ 1. For evry i € K,
040, Thismplics tht o ll € K a7 1 # 1. We asoci that, or
vy § € K, 1 7 0. o se why, asume tha ther s some 1 € K sich that
= 0. Tk £ 5 to b the e that mape M to this 1. Then @] ~ .
Thi implcs & = 0, contradicion becase € K. Futhermor, nte th
(s trivially olds I A = 1. Suppose M" = 1. Lt 1 b the anly lement
SF K. Then, for sl o € 5, Qo] = B, 1 o and thi s 0. S, () hlds with
= s = 5. I th Bllowing iscusion, we thus s that M' > 2
ndthat for 4 € K oy (~1,0,1),

Lot k and 1 be two disinc lments of K. Lt = € S bo such that

7(M) = K and n(M" - 1) = L Let o be the permutation in § such that
(M) =1, o(M=1) =k, and or all § € {1, M)\ (k1) o) = %C).
Let
0= B2+ axoen Brcar-n + axcur-n -+ By + )
Then
Qi = o+ anC+ ou)
and

Qo] = i+l + an8).

By our suppesition, Q/[r] = o] =0, s0 Q/fx] = Qo] By canceling ent,
we obtain

a1 e
Since L€ K, ar # 1. So, we have

“This relation holds fo al piesof distinct indices (k, ) in K.
Let g1,y be sn abitray enumeration of sl clements in K. Then
for very £, 2 K< M,

a-0s, ,
=) 6

@
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So, P focuses on the number of accaptng paths of NP machines and
OptP focuseson the largest output value of an NP machine. The class SpanP
seeks to captore the functionsgiving th ichnessof the cutput value se. That
s, function { i in SpanP ifthee s some NP Turing Machine N such that,
o each 7, (=) the cardinaliy ofthe s of stings output on the scceping
pathe of N. (By looking at only the accepting paths, we allow the possibiity
that on some inputs £ may take on the value ) SpanP was inteoduced by
Kobler, Schoning, and Torén (KSTS0], s alo [K5b89,5ch90). Spank is »
uite fleibleclass; t i ey to see that Span contains bath 4P and OptP.

A7 IP and MIP: Interactive Proof Classes

A vrifier i a polynomial tme-bounded probabilistc Turing machine V with
 specil state calld query state and k specil read/write tapes calld com.
municaion tapes, where k > 1. Through the k communication tapes, the
verfer interacts with £ adversares P, ., Py called provers, which have
iimited computatianal power and can use randomness but cannot comimu-
nicate among othars. The interaction with provers i invoked when V enters
ey state. At that moment, for each i, < § < , th string held on the th
Communication tape is sent to .. In the nest move,for each 11 < 1 < £,
P, supplies . snswer, which depends on (1) the input to V., (2) the query,
(8) the questons and answers passed through the tape so foe, and (0) Py
probabilty disribution.

Dofinition A.7 Let k> 1. A language L has a k-prover interactive proof
system i there exist a verfer with k communication tapes and k provers
iy ..., Pi such tha for every x, the ollowing two conitions (1) and (2),
respectively ealled the corectnass conditon and the soundness conditon, are

Lz €L, thenV onz with Py, ..., Py accepls with probabiity greater
than 3 and.

2 iz ¢'L, then for anyprovers B, .. P, V onz with By ..., P, rejects
with probability reate than

1P (respectively, MIP) isthe clas ofalanguages L that have on-prover
e e (ot o il o] i o
some k,

Wo il sometimes omnit the word e prover” but, by convention it will be
implicit.
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1950 (a3, s e [Wes6). An ncomparable bt et sl b besn
proven by Burtacick and Linder [BLOT). They prove hat Ry 7(P-se) €
Eflnes.

Secion 33 i based on the work of Hemaspaandra ot . [HNOSDGH|
Book, Long, and Selman (IBLSS), seo also (BLS5,Sl0))first introduced
tho funcion lassos NPSV and NPMY (Deiniion $18). Rfinements (Del
inition 319) have been csefly sudied by Selman (So3], Lomma 323 s
ks de o Selman Se94). Sem-easily slctvey) was xtendod t non-
terminiic toralfnctions by Homaspaandes ot . HHN' 5], and wes o
ended to nondterministe parial functions (Defition 3.24) by Homaspaan-
o al, HNOSO, Wang (Wands] hs seudied extending semi-fessviley
o counting casses. Though in this chaptr w use “somi-{easble” a3 0 sy
onym or P-seloctive; we mention that in the ltarature “se-eaible”
i ofton usa in . broader seno that encompasses such nendeermnistic
and other analogsof Pselctviy. Lemm 928 was s sated, with some-
what comple dirctproat, by Abadi, Figenbaun, and Kiian \FKED) and
Kimpr [Kim;the fct tha i i implict n the riginal Kazp-Lipto re-
st (KLSO] was noted by Homaspaancra e ol [HHN 55, whoe proof we
llow hor

Lomma 3.2 is due to Kblr and Watansbe (KW Related to the
work of Cai mentoned in the Bibographic Notes of Chap. 1, from the
hypothesi of Lemma 327 one can sven concude dhat (SEPV N NP =
PH [CCHOO, which n light of the fact thae (53971 <P ¢ zpp™
(0], s b [CCHODL, e at e a szomg a Lo 3.27.

Theorem 322, Cook's Theorem, is due to Cook (CooT], though it s
sated et in  rlaively strong form. Levin [LovTs) ndependently dis-
covered Cooks Theorem, and thos i sometimes s efrrd o i th &
Craure as the Cook.Levin Theorem or, n light of the conributions of
Karp [Kar72], a the Cook-Karp-Levin Thorem. The inteseting s of
whether & Theorem 3.2 ks e hlds for FPA” remais apen. Tha i,
it is ot known whethe: I very NPMY functln ha  reinement com-
putable via polymomial-tim teuttabl sccess o NP, then the polymomial
Hierarchy collapss. It i known that the statement “every NPMY fanction
has o rofinoment computable via polynomialtme ruth-table acces to NP"
s reative to some oracle (T80, se (BT96s]) yet holds relative to &
random oracle (IWT93] and th proof i based on the slaton Technis of
Chap. 4). Ogihar [05i9] b shown that i every NPMV fnction has .-
Gnemen computable vi plynomial-tme ublinsantruthtabl aces to NP,
e the polynomial earchy callaees, The e ofotnot 4, .., vhather
NP () coP)/poly equals (NP/poly) ()(coNP/poly). has boen stacied by
Gavald and Baledzar (GO, see sl [CHW98)). Thowgh the question re-
mains open, Govalda and Baleiza o ive & stuctual consqnce that
wold follow from tis squaley
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FCE RN M e

o

Then, by pasts 3 and 5 of Proposition 9.3, ¢ & GapP. Then, or & given J,
part 1 o (+4) can b tested by ssking whather g'(z,J) = 0, This s a query
o4 C_P langue.

Now consder & nondeterministc Tiring machine that, on input = €
nondeterministically seects and exscates one of the llowing two tasks:

Task 1 Nondeterministcaly selct i, 1 < § < 201 Ask the oracle
“whether o, =, = 0. Accept 7 if the answr of the oracle is postive
and reject = otherwise

Task 2 Perform the folowing three operations:
 Nondeterminisicaly seloct m, 1€ m < r(£), Jy - e 1 < Jy <

< g < 240, intogers 1, ., B, .. b ten —205
and 2708
« Tust whatherthe second condition of (1) hods with,fo all 1 <
m. 0,/2707) in place of , and with 5, in place of /2700 for
T the test il then immecdisely ejct 2.
Ak the oracle whether the firt condition o (+%) holds. Accept  If
the answer i positive and reect  therwise,

By the discusion in the above,  C_P oracle can snswer eachof the qustions
that sco made, Obviously, the machine i polynomialtime bounded. This,
LeNpe. a

7.4 OPEN ISSUE: How Complex Is Majority-Based
Probabilistic Symmetric Bottleneck Computation?

Theorem 7.13 states that probabilistic symmetrc bottleneck computation
capturesprciscly NP We deine ProbablisicSSF usog “th exact hall”
s the membersip critrion, Namely, fo every  and every permutation of
the mappings, = is & mermber i nd cny f the probabiity hat 1 is mapped
1 oxacly & half. What kind of cum does i bacome if we changs the
efniton such that the probability must be more tha a hlf? No one knows.
In act, we dont even know whethe the majority-based clas fncuds the
Sexacly- bl based clas

7.5 Bibliographic Notes

Theorems 72 and 7.6 are due to Barrington [Baso]. Theorem 7.8 is due
to Gl and Furst [CFOI]. OptP was introduced by Hemachandra. and
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Step Lot i, .t b ensmerion o ll the qries made by N
o the Computaion path tat A bees s n S 1 For sach
e e v € T s ot e e o . i
27050 and §, to the rank of = in £0.
Step 4 T tota whethr there o some £ 5 < 1, such tht it
o0 > i anl the i b gessedfor uery 3, doring the smlation i
St 15w 0,01

01 < v the bt b gussd for query v, during the smlntion i
Sieptisa L.

1 Gt s ch an i, mmcinely et 7

Step 5 T ket oace whather (41,1 %% 7)o = facou(u) A =
e (90T accpts = b amws o the cxcle s abimative nd
Tt herwie.

Clerly, the machine T runsin polysomial ime. Defne

Waee = ({5, |y € 5" Am 20 Am = facen()}

and
Wooy = ((5m) |y € 5" Am 20 Am = #reug ().

Then both Wi an Wy blong 0 C.P. The qere inSip  can b done
by ingle conjunctive query 1 th macked o of Wae nd Woy Since
L oned s <1, eductions (s Theorem 0.9, ther s g

Cam anome th contneive ey hat 1 s
peymomial bonding te i of . Sice T poy-
o ime bounded, he i  plynoia psch hat, o il € B, each
Compatatin path o o ik cu b ancoded st o bavin Ienkth
at most p{lz]). Define A = {(z,u)| 2 € £* Au € P05 Au is an accopting
computation path of T on input 2 A_the query that T on input z makes in
St slomg pth  blong t D). Then 45D, and thi, A € G- Snce
for vy rE 5,

zel o= (Gue D) Al

the claim holds.
Since 4 € C.P,
hat for al 7 € 5

exista langusge B € P and a palynomial , such

zed e iy e S| (xy) € BYI = Iy € | () ¢ B

Define 5 E* — ((12), ) t be the probabilsic function deined by the
following machine My: On input (r,3), 2 € 5 and y € D0, My selacts =
from S uniformly st random and then outputs (12)f {(z,5),5) € B
and outputs Iy otherwise For each = € E° and y € BA07), deine

i) = Prlf () = B = Pelf(2,0)

12).
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ool Somifonsible Computation

Sckctod Facts and Theorems
1P C P ¢ RECURSIVE.
3 The seotivesea e clsed under complemetation,
3 Tho P-tloctive et e clo downward under v reductions
TBTvenes
4 The Pslective st e coso under exactly 24-+2 of the k-ary Loolean
unction propetis, namaly thse hat ve cthe completely degencrte
or Simost compleely degenerate Tn particia, the Pdicive et e
oo s et union nor erecion fitost)
5 NPC Pl s P o NP, Indeed, NP C R (P-sl) = P = NP.
(57D, A6, BKSD5, 0ot
. roducibl o Pasckctve sete then P - UP.
et t P slctve s hen P = Fow

6 ) Ifall s in UP e

) 1l s in NP e <

P
e S
(o
.10 b it Pt sl fr NP
all k> 0, SAT € DTIMER™1%"") o]
PR i A SRV i
h S am s
i PRGN =ams
A0 P NVt e e oot by ol
(o Chap.
NESY-a (N € (N )P o fotin ]
NPV Rl ) Pl et
PR EES UR | b ) - ool
R R ) R A fibo
PPl s o S g
E e ikood
16 Moy i el i i . (B1oa)
e e P 4 e et s
bt T b U s
1816 A is & Poselective set, then NPY™* C NPASAT In particular,
NPT | ypae, [KS85,ABGOO)
10, BE(e o € X . s

Fig. A23 Pslpart 11

have been defind: the P-sclctive sets, the P-close ses [Sch864), the near-
ostable sts (GHIYS, the nely nar-tetable sets [HHO1b], the slmost
polynomiak-time sets [MPT9], etc. However, the P-seective sets stand out
from the crowd in thei contralty in complexity theory. The NPSV-selective
sets are, somewhat. curiouly, best motivated simply as a tool. In partics-
lar, they offr the key bridge to proving that unique soluions callpse the
polynomial ierarchy (Chap. ).
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We'l employ the following slighty stronger form, based on Theorem 1.17,
of this reult

Lomma 3.27 NP C (NP () coNP)/poly = PH = ZPP™".

NPSV
reinements. Consider the multivalued function o7 such that, for each

iy,
st fsar(e,1) = (5,9} () SAT.

This function is in NPMV, as it is computed by o nondeterministic
polynomialtime machine that nondeterministiclly chooses 2 o y, and then
nondoterministicaly chooses a variable asignmen 1o the chosen formula,
2 then outputs the chosen formulaif that ssignment satisfic the formul.

By hypothesis,all NPMV fonctions have NPSV refnements. Let goat be
n NPSV refnement of fsx7- Noto that gsur s dofined exactly if t loas one
of it arguments is in SAT, gsxr is an NPV function, and if st least one of
gear’ arguments is in SAT then gsxr outputs an argument that is in SAT.
Tndecd, goxr it an NPSV-selctor function for SAT. Thus, SAT & NPSV-sal
Note that

(LGB € NPSV-sa) £ <7, B])

clearly cquals NPSV-sel, as such sn L has the NPSV-sclector function fi
defined, for all and y, b

setfu(e) = { o) i Jalo(e),o(0)

0 othervise,

{ (z}f fo(o(2).0(0)

whto f i the NPSV.sclecto funcion for B and g s the many-one reduction
from L to B. Since cach NP sot <2, reduces to SAT, it follows that NP €
NPSV-sel () NP. So by Lemma 3.5 NP € (NP () oP)/paly. Thus by
Lemma 327, PH = ZPP™". QThoorem 330

We now torn o proving the ey lomms, Lemma 325, There issomething.
 wee bit surpisng about this lemma. I paticular, one might expoct only
the potentially weakert (snd aso rue) claim

NPSV-sel [ NP € (NP/poly) () (coNP/pely)

sets in NPSV-sel hve selector functions that re merely par-
il and pastial functions usually confound (NP ) coNP) /paly-type pr

because to prove that a set is in (NP ) coNP)/poly requres a et th
NP () coNP-like for all advice strings—not Just the correct advice sring.

“Thouh oy (NP () o) o € (NP/pcy) () CoNP/pol) ¢ i s
open qustion whther (NP () CoNP)/pay = (NP/pely) () coNF/poy)
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For each z € I, defne S(2) to b the st ofall i € My such that orsome y €
20 it holds that (2, 4)) = . Since £(2,7(P0D)) o - (2,7 (0%071)
maps 1o the same index regardlss of the <hoice of 7, o most on eloment
from {11, 2, (1 2)} can be in S(z). Then, for every z € T*, 2 € L if and
caly if eithe S(z) contains v o (S(z) contains (1 2) and there i an odd
umbes of y € L7, such that ((z,4)) = (1 2)). The forme condition can
be tested by an NP set

= (=] Gy € D)1z, 00)
and the later can be tested by & GP sot
Ly = {zl{y] v € 279 A f((2,1) = (1 D} is an dd mumbar}.

o L= IaLa Bl 2 € B € L thn 13) € Se) w0
vz € 5(z), and thus, = ¢ Ly Thus, Ly () La =

al)

7.3.3 Probabilisic Symmetric Bottleneck Turing Machines

The porwer of width-2 symmatric botteneck Tring machines is, s we showed
i the previous theorem, very rstricted. They do o seem powerfl eagh
toinclude tho polymomial hierarchy. Howover if they are endowed with access
o randomness, they gain the polynomial hierazchy:

Thoorem 718 ProbabilsticSSF; = NP

ProofFirst we show that ProbabilstiSSF; 3 NP, Lat L be sny lan-
usge in NPPP. W claim that there exists a polynomial p and a langusge
A€ . such that, for every 2 € E*, 7 € L if and only if there exiss some
Y€ 5707 such that (2,5) € A. To seo why this clum holds, et N be
polynomial time nondsterministe Turing machine snd let B be a language
in PP such that L(NA) = L. Let B ¢ PP and let ths be witnewed by
 polynomial-time nondeterministic Turing machine M such that, fo every
ZETz€B ¢ fgapylz) 2 0. Lot q bo a polynomial bounding the
runtima of . There is  polynomial r such that, fo every = € * and ov-
ery potential query y of N on 7, both faceu(s) 1nd Hrejy () ave strictly
e than 275D, Define T to be'a nondeterministic polynomial time oracle
machine that, on input € 5, behaves as fllows:

Step 1T nondeterministically simulates N on . Each time N makes a
uery, instead of makin that query, N guesse a single bit b € (0,1}
nd then returns to Jation assuming that the oracl answer
affcmative i€ b 1 and the oracle answer s negtive f b= 0.

Stop 2 T rejcts 7 immediataly if N on input = rjects alon the compu-
taton path simulated in Step 1
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Deine
s {2 itm < o),
€801 J < Iygapis) therwise.
W clim that 8 s  refinement of Ao for 2 under . 1f m < (), then
8 = 3, 0 8 clearly s a einment of o fo  under 7. S0, uppase
hat > q(n) 1, and chu, that 835 G . Suppase tht 7 i correct, For
asch 3, 1% 5 € . It Iy = g, Assme ey < smn(2). Then
for all 5,12 5 € (1) 1,y < ). Snc 7 18 orrect for ll 3,
1S5 S qll) 1, o) is s by . For ech 5,1 < 5 < a(z) +1,

BrILJ0.-+..0) = 0. and thus, Q1] (1 # 0. The intervls .. I are
hosen 80 that Qs (1, .. Qr{[n] e pairvis disnt. Thus,
USN U - @dnllizat)+1
sssslae

This is a contradiction, because the mumber of stringsin S that may appea
a5 & query string in ((£,3)) for some y € 2070 isat most g(jz). Thus,
s (2) < 1 S0, ll ntervals € Do whose left en is greater than.
equal 0 41 can be sally liminated fom Ao. Hence, A i  reinement
of & for % under 7.

Let o = min{m, (21} sad

r= U @i}
Let b = [, Then h (-~ dm, For evey 1€ 3, there exists some y € R
such that y € @[] Let 31, .-, b the coumeation of the srings n R
in ocogeaphic order. For ach 5,12 < h, et

0= ] € A0} A(¥s 1525~ DT ¢ 0.1 Al € QulAD)

By th choi ofthe nervals [, I, 1,8 ao sl onampty and
526, U U0y Foread5, 157 h and rach b € (0.1, 65, be
b et o ol thst CULL o it (,8,.) utputs s 8 reincent
e Pl ) o
Tt To = Ureyen Unntg) O BY pact 1of Fa 112, CULL orsely
Conpui S5 Gt e s hn o o fnemen o
0 fr e 7

Diviing 1. Suppose that &y # . CULL computes an ineger m 2 1
anda sequenc of ey -l € B > By > T, 38
pen

+ 1y 10 the etcographic maximum of the Iterals 1 A,

© Foroach > 1 such that I s defimed, ot 511 = (7€ 8 (45125 )
QTN QL] = 0. 1 Sy = 8, hen 1.1 15 ndefoed 1 Sv1 % 9,
Ghen T s te ecoraphis masium of s otavals 1 &,

o 1 e g ¢ o hat Ty 1+ dened
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Wo defe the proof of the sbove Jemma untl afer the proof of the main
theorem, Theorem 3.0,

Theotem 116, the Karp-Lipton Theorem, states that if NP has
sparte <h-hard sets (cquivalently and more to the point here, If NP €
P/paly), then the polynomial hiersschy collapses to NP Can ane es
tablish the same strong conclusion from the weaker hypothesis that NP €
(NP ) coNP)/ply? Not only is the answer yes, but this stronger result is
in fac assotially implicit n the oarler result,vi relatvizaton. Such a sit-
aation s rferd to, only halfjokingl, s “proof by relativization.” W now
Eive such a proof fof the stronger esul

Lomma 3.26 NP € (NP () coNP)/poly = PH = NP
Proof By Theorem 116,

NP G P/poly = PH = NP,

Ao, i e tha this result relatvises Lo *
(VA)INPA € PA/poly = PHA = NPV ©9)

Assume NP C (NP ) coNP)ply. So SAT & (NP () coNP)/pol, say
via NP (1 coNP set B. By aquation 39, taking A = B, we have

NPP € P/poly <> PI® = NP ©10)
Hovever, NP C NPP € PPN _ NP (Sect, Ad) and PP C
PN NP () coNP (Sect. Ad). So by our NP € (NP () coNP)/poly
assumption, the hypothesis of equaion 3,10 hlds fo . (One can alterns-
vy see that, under our asumpion, the hypothesi o equation 310 holds
vin noting that if SAT € Bpoly then NP C R0 (B/poly) € PO/poly)
. by cquation 3.10, PHY = NP*™”, However, since B € NP () coNP,
NP, Thus, NP C (NP () coNP)/poly =

a

PH = NPV

T Weean i  exin o the e o ey i, Th o iven i i bk
o he Ko Lipton There actualy does ok el ot e s b o eh
Coniree et SAT. To vt O prof wamyone, howee, ey iy the
o e ot o n NP-conplee e th, T SAT, & el b
ot 4 mcly selaiviabe. A good campleof v .t e et Ly tht e
will now define. Let N3, N, .. be a standard enumeration of NP (oracle) Turing
machinesindex uch that each machine , s -+’ - bounded on every racl.
Suchenumesion o o cxit. et Ly — (o iprefpadpad] (VA2) has
et o ah i e i e of the e bk ko i Acseping
o snd (i pd] 470, Note cal L okt <5 compts ok
NP but even is <2.-complete for NP4, for each A. L4 is also (2disjunctively)
e g o i B e g
il
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By routine caleulation,fo al permutations % of {1, ..., M} it holds that

Q) = Pel(f(a (M) o -+ oz, 7)) (1) = 1]
=Pr((f(z7(M)) o - o f(zx(1)) (1) =
Then, for every permutation ¥ of 1%,

zeL e Qi =0.

Let 1 be a polynomial such that, for ll w € I and v € DX, g(|(,v)) <
r(ll). We clim that = € L if and oly if one of the fellowing two conditions
holds:

(4) For some §,1<1 < M, 0y = f =0,
(%) There exist some m, 1 < m < r(zl) and s, - jm € (1, .. M)} such
that
o forevery i € (1 M\ G ook Ao
B+ 032 B+ 0B + )

First e show that € L fthar () o () holds.Suppos ha (s olds.
Let 4 € {1, - ) e such that = B, = . L v o parmmeaion of
{1,..., M} that maps M to i. Then, by (7.2), for some real number Z, it
bl St Q1] - o+ - Sinen = P - 0 ks sl that Q1
Thus, € L. Next sppote tha () dot ot ek an ()b Lt 7 €
{1, ,7(lz])} and jy, .. 1jm € {1, ..., M} for which the two conditions of
()l Lt b & oo such hat for every 1,11 . ()
Toen

Qb
( il n.) G B 0By + )
et -

NG

By the second condiion of () the second term o the right-hand sid s 0
Thus, Qlr] =0, and this, = € L.

Nt we show that i 2 € L then ciher (s o () bolds. Suppose that
2L L K= (i[4€ 1A5 7 0) and M = K| Let S = fo] o isa
permutationof (1, M) Aa({1, .- M') = K}, Forcach o € 5 It Lt
@] b the formuia Gj] with evrything beyond ndex o(M') elminate,

and

Bataey + s By + ar(
Bt + oot + @)
Then, 5 we have seen i the previous part of the proof,for all € S,

Qol=Ql [ @3)

et
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A A Rogucs’ Galley of Compexity Clases

o,

ModP — Modulo Brsed Computation

Pomr
Modulo-bsed computaton
Detition

ModyP = (L{(3 NPTM M) (¥2) £ € L += fiacey(s) #0.(mod B}

P - otip
Aot Deition
(e byt et and o oy
Moiu? = { L ot s ot o e € 2 o 0] 1 €
e P i o
Backgoand

"5 was introduced by Papadimition aad Zachos [PZ89) and Goldschngerand
Parberry (GPS6]. ModLP was nroduced by Cal and Homachanden ((CHS0],
gty ey

Complee Langusges

GSAT = (7] 1 hasan even mumber of stisying signments) s complee for
G Ansiogouscomplte ses exist fo Mot

2 P28 KSTToR FF KoY
3. For any & that is o prme powr, ModsP = coModaP. BGo2
3 Forany ntegr £ > 1, MobuP Moy, where (i) dnates the prod

et of ll s that e divsors of k., (13 =2 3 = .Inpariuia,
o any  tht s prime power and 1 2 1, Mody P = ModaP.

1co0] s s (852
5. For any &, ModyP i clsed under union. Hero0]
© PP < Bppe. (on Chap, 4]
7. Thers exits an oracle A retve to which PA = NPA = PHA # P4
XA Bhuom

8. For ach k2 3, the cxisence of spare <

L Vonyr olss)

0. For cach k32, ModsP C R (Pe) s P =ModsP.  [AAS6 Ogi95h]
1. There exists a oracle A elai 1o which @P £ PP

(on the et and Biblogaphic Notes o Chap. 8)

o sets for ModsP mplies

Open Proiem

“NPCaP — PHC P

Fig. A24 6P and ModsP.
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 sting in Ha, and by Theorem 5.1 and the propertios of NPSV-selector
functons, this describes exactly L= Q" Lomma 325
‘One must distinguiah botween Theorern 3.20 and the following seemingly
imilar question, which remains open.
Open Question 3.28 Does UP = NP imply that the polynomial hicrarchy
collpses?
“The distnction between this question and Theorem 320 s that NPSV ma-
chines output at most one value, but his alue may appear on many paths
Indoed, it s not Known ciche that UP = NP if all NPMV functions have
NPSV refnements, or that UP = NP oy i all NPMV functions have NPSV
refinements

3.4 OPEN ISSUE: Are the Semi-feasible Sets in
P/lincar?

Are the semi-fesible sot contained in P/lneae? Note that fom Sects. 3.1

a1 32 we know
Pl € NP/lner (] Plquadratic

Secking the best of both worlds, we might wonder whether P-sel C P
can be established.
‘Wo suspect that Pesel € P/lincar. Hovover, to prove this might be chal-
lenging, a proving this implies P 7 NP. Thi
NP then P-sel € P/linesr. On the o
vin somo clever algoithm, one can unconditinally prove that
Pael € P/linear

Open Question 3.20 Pl € P/linesr?

3.5 Bibliographic Notes

Section 3.1 is based on the work of Ko [Ko83], I that paper, Ko establ
ot just that Posl € P/poly, but even that  slightly mote general clss,
Known as the weakly P-slectiveset, i lso contained i P/poly. Later work
by Amir, Beigel, and Gasarch [ABGOD], Hemaspaandra e ol HURWGT], and
Ogihara [Ogi955) shows that P/poly contains other broad generalzations of
the som-fenile sets.

Section 3.2 is based on the work of Hemaspasndra and Torenvliet [HT96]
and Hmasposndra, Nasipak, and Parkins (HNPOS], except Theorem 3.7,
which is implicie in & proof of Hemaspaandra ot al. [NOSOGa), and
Theotem 59, a standard fact fom graph theory it moted i the
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Then, forall 2 € T* and y € 505,
() €4 o= dl(z,y)

By routine calculation, for every € 5* and every permutation = of EX%),

P (e o o o o,z @) () =1]

e (A m 1) 0 o flax@)) (1) = 2]
I dem.

Since th sum ofthe oo teru o theLf-hand sde ofth formula s 1, we
have

Pe[(fe 70D o o om0 () =1]

343 I de.

So, o every 2 € I, the fllowing conditons o

16 € L, then for some y € 5204 it holds tht diz,) =
permutation = of T2,

Pe (e m07) 0 -o e, @00) ()= 1] = §.

162 ¢ L, then forevery y € B () 40,5, fo evry permutation
 of ),

. o, for very.

Pe[(sGa @) o o o x @) () =1] #

Hence, L ¢ ProbalilstcSF;.

Conversel: suppose that L € ProbabilisticSSFy. There exist » polyno-
mial time probabiistic Turing machine T that dofies, on each input 7, &
distribution aver M and  polymomnial ¢, such tht, for very = € £, and
every permatation = over 41,

zel e Prlflan( D)o - 0 f(ax @) =

Kot e plmomi hat bosnde he i of T L2 € b, Lo
2 2801 For each ,151.% M, ot oy = Pl (e, = b — Pe (.30

02 D50 e ) v b e b
in S0 having rank £

For each permtation = o {1, .., M), It Q[ denote

Beian + @wcany Briae )+ Qcat (-
Bety + @i (Bt + ax)). 2)
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‘The NPSV.slective stsare ot the only generalization of the P-selective
st Many other generalzatons or vritions have been devloped and stud-
e [HHN 35,04i05b, 2206, Was05,JLIRNO7 Zim08,ABGOO,NicD0|.

Finaly, it i very sl o be able o asime tha selct funcions sre
abliviousto the order o ther argumenta. et /() be & slector function
for . Nttt ) = o5 ())& ol o et

Proposition A6

1. I L i o P-selctve st then L is Psletive via some slector function

1 €P such that (¥,9) f(z,9) = f(0.7)]
2 I L is o NPSV-selctve st then L is NPSV-selctiv via some selctor
function { € NPSV.such that (¥2,3)set-f (z,3) = set-f (. 7).

A.15 ®P, ModyP: Modulo-Based Computation

(BN M € L e
wear = {2[GIT0 Nt )
P = Modsp

P, itroduced ndependently by Papadinitiou nd Zachos [PZ53] and
Goldachlnger and Paberry (GPS], cptares the pover of party. i and
Hemachandes (CHOO] snd Beigl, Gill, nd Ttz [0 B 5G52]
aomerlzad the cl to modules other han tws, There are race flative
ok P dos no even contain NP, s hon by Torin [Trd1Tor 8]
Nonethlss, Toda [Todo1e] roved tha BPPS contins the ctie pay-
sl hrizchy, nd Turu [Tt shows that R - PP contain the entite
‘polynomial hierarchy (and even PP¥H).

A.16 SpanP, OptP: Output-Cardinality and
Optimization Function Classes

The counting class P captures thenotion of the umber of sccepting paths
of NP machines. This class plays a very central rol in complexity theory.
However, i s not the only funcion class that plays »central ole.

The function clss OptP, introduced by Krentel (KreSs], see
also [BIYSI]), seks to capture the notion of maximizing ovr the set of
output values'of nondeterminisic machines. Our model is s folows. We
by convention say that any path that does not explicitly output a non-
negative integer has implicdy output. the integer 0. A functon / s an
OptP function if there is some such machine, N, for which, on cach 7,
() = max{i € N some path of N(z) has  a its output).
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The proof of Lemma 325 fineses this by combinin the divide and conquer
dea behind this chapier's GEX soction with a trick: requiing membership
proofs to be part of the advie. This, plus the fact that NPSV-seector func-
o axeonly partially partil —the defintion of slectvity requires them to
1 defined whenever at last one of theit arguments s in the st for which
Chey ate selctors-—suffics o prove the rsul
Proof of Lemma .25 Let L be an arbiteary et in NPSV-sel () NP. Let
N bo an NPTM accepting L. Let { € NPSV be a slector function for L.
Without loss of generality, sssume

042, stof 1) = et/ 2]

Wo specfy an sdvice interpreter A € NP () coNP and an advies unction 9
shoving that L € (NP () coNP) poly.

(2, (a1, 02, .-, @), (g, wa, -, we))) |
sy

(41 1.5 ) i a aceptng pach of Ny (a)]
R

Clestly, 4 € NP. 7 is lsoin NP, s the following NPTM  acceps 7.
N scoupts immedintely i the input s systactiealy -formed or if 7.
Otherse, N detemiisical Shecks whether (Y + 1 % 1 < ) 3 a1
accoping path of Ny(a)] and N mmedistely acopts i hi check .
Otherise, N rejcts immediately i 2 € (03, o). Othewise, note
O (1,0, o) € Lo N s sen and hecknd membershipcrtifctes
o ach o So, by the defniton of an NPS\V-selctor funcion, s each 4 t
o tha .oy ) = 1. N o nondotemiiatically gesss o chcks
e i i of st-f (0, ) o al 1. Tho nondtermiisic path(s) that
correcy gues an chock for sl § which of z s i the unique slement
0 e (o ) ccep i and oy i ol it b hat st ) = (0.
This complte out NP algoithn fr 7.

‘Out advioe funcion i a fllows. A each length , consider L%, NPSV-
sclcto fnction f induces . totnament on L s ollws. By the defiton
of an NPSV.scecor functon, o oach b € L=, 0 # b, exacly one of
o € 50f(0, ) and b € 3tf(a, ) hld, 3 1 ndcen o tumament i the
same fabion s in Sect 3.1 or 0,0 € L% a g b, odgs (a5 wil bo in
out tourmament i and nly if e-f(0) = (5. By Theotem .1, ths
st Hy © B, [y < , sch tht each element y of L cither i n iy
o fo some € H stishis se-f(3,) = y. Out dvio sting for lngth
il e (b, .1, b (01, ), where (o, B - ) = H and
cach - aceeping pah of Vs (). This dvicsfunction i polymominly
engibounded.

Tho st A and this dvice function indesd do_prove that L
(NP ) aNP)/pely, s the itrpreer A--wit his advice fncton il
S cah lngih 1 acept exacly hes sings tha s i, o tht defent
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A A Roguss Gallery of Complexity Clases

TP, FowP,_wnd US — Unambiguous Polynomial Time, Polynomial
Ambiguiy Polynomial Time, Unique Polynomial Time

Selcted Facts and Theoroms.

P
b
b

GRS T gue g o

[KSTT92,PPK94 FFLOG]
a8 s, hn 1 UP s S o
L in UP it holds that NPP* = NP, fimor)
P2 UP < ‘on-trone one-wy fonctionsexs, (e Chap 3
Ufambigaous (ie, ont-toons) one-vay fnctions exist i and only i
ot ambiguey oneway fnctons exist Euivalenty, P % UP s
i (oke Chap. )
P Feut s polymomiatt-one one-way functions e

(e the Bibliograghic Notes of Chap. 2
P4 UP () coUP o= cne-torone on-vay foncions whes range b P
exn s

P Fou £ and only il spare st in P ave Ppeinable.  [ARSS
I UP has complet Ianguagen then ¢ has & complete language of th form
L= SKTAAACP. i)
(AN #UPA = NP4, [Rackd]
(GA)PA 2 UPA X NP = EXP] (and 0 relaiv tothiscrcle 4, NPA ot
only differs rom UP™ bt even i P mimune, s sideeffct ofth known

e hak EXP contains P manine s, obros
(GAYPY = FowP® 4 NP GHPH 4 UPY 4 FewP 4 NP, [Rubss]
(GAIUP has o complete langusges i)
(GAPA 4 UPA 5 NP* and UPA has complte angunges | 58]
(VAN s caegorieal | > (VAL(N) € PYPoA] (HHo0]

There i resonsble i, PA 4 NPA) orace 4 fo which PA = UPA

(Gt her e noome 5-0ne ce-vey anctons) Yt her a et that
“complete fo NP and sre P eemorghic. . (HHDIa]

PP U ey Fer S S S ot 5 CoAT

and (2) 7E'S = 1 has exacly one

nd cotions ol ormuis -

o 1es
o= { e it i g ot 1 15
i — s
G R SR B e g e )

ey
Pines € UP )b, e

Fig. A13 UP, FeuP, and US-part 11
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will again spply, sad so chere will be  player who loses o at east half the
playersn the redced tournament. Adthat plager to H snd agin reduce the
tournament. Continiing this proces, wo evenually arive at a set H having
property 2 from the staement of the theorem, since thre will cvenully be
o vertices under consderation. Ao, the number of clements in H it bounded
by the recurrence relation: (0) = 0 and, for esch k > 1, (k) < 1([1-1).
Asis standard, this recurrence relation implies S(E) < [log(k +1)). ~ O

This innocuous theorem n fact proves that. the semi-feasble sts have
small ciruit. (Readers who are not fumilisr with the definitions of small
ircuits and semi-ensble set should a this poin quickly read the ntroduc-
tions to thesotopics contained i, rspectively, Sects. A.6 and A1)

Theorem 3.2 P-el C P/poly.

Informally, the proof goss s follows: At sach ength n i any sem-fesible
(squivalently, P-seective) st L, there wil aheays exist, by Theorem 3.1, &
small st of odes in L such that very eloment in L= defets one of thise
odes, and this small st of nodes it will fnction for s asa “small dvice
set” for L (snce each sring in L will defeat. one of thess nodes, and by the
defnition of semi-feasibilty any sring that defoats one of thes nodes must
bein L)

Proof Consider »sem-feasibe set. L. Recal that o prove that  has small
circus (., L € P/paly), it sufice (see Sct. A.6) to provide » unction g
s 830t A€ P such that

(m)zel = ol €4 1)
and
(@ polynomisl ) () lom)] < a(n)}. )
Consider the length n stings in L, L™ Let f : 5* x 5 = 5 b &
polynomialtime computable function that i a Pselector for semi-fessible

et L. Without loss of generlity, we assume that (0.8) = /() for all
a and b, a if  does not satisfy this condition, it can be replaced by the

function
£1(6.8) = S(mina,b), max{a, b)),

hich doessatitythis conditon and, a follows clstly from the uc chat |
s Prsclector for L, 1 is o P-selctor for L, Consder the tournament on
L7 nduced by 1. That i, consider s smple (.., having o e Joops)graph
G whcs o acs the lement of L, and uch that for any o.b € L

a4 b, i holds that ,b) € g <= f(a,b) = b. Note that this indeed
is » toummamers. Theorem 3.1, ppled tothis trnament, states that there
exsts o smal e Ho (n particular, [Hul] < log(1 + [L~")] < n+1) such
ha this e Hy contains only membersof L= and for every lenent of L="
thee is come cement h € Ho sadsying J(,z) = 7. Noe tht 1 € Hy the
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Fig 31 A 5 Toumament

Theorem 3.1 If G is o k-toumament on nodes Vo = (1,2 ... k) then
ther ezists 6 et H € (1,2, } such that

L |[HI| < llog(k + 1), and
2 for each v € Vo — H, ther i some g € H such that (s,0) € .

Proof Conider a tournament in which there sce & players. Thus, ach
plyer plays & - 1 games. Nots that some player st o at st bl e
ime, e, mus lose at lest [551] game. This is ecaus i each game
omsone i and. someone lose, % the total mumber of win equals the
otal mumber of loscs However, f o layer were to lose t est haf the
time, then each player individually has strictly more wins than losses, and
thusoverll her ac el more vins chan oses, whic s mpossbe
Sclck some player whoLoses t .l he garesheplys and plce i
in the st H. Remov fom con
deen hat plye. Noe hat the o layet st hasa st — (14 [1511)
411 players. Consider the tournament induced by resricting our attention
i oalyth dgs (s n e ourmameat plapedbetween Plyeraf b
Ceduced k. Nots tht, i this educed toueaament, oue previous rgument
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Let T bo the program chat executes Py @y, Ra, St .. P Qe R i n that
order. For il z € B, if n(x) = ga(a) = 1, then Tie] = s. Alo, Ifsither
1(2) = 0 o1 g3(z) = 0, then Tla] = . Thus, T s an (e,5) progesm for .
Since k < [[H[| and P1, Q. Ry, i, .. oy Q. Re, S all have ength at most
B, theengthof the program T o st (4 ) o desieed,

To construct an (s,¢) progeam for g having Jegth st most (][H])"
e fellow e above construction with 51 in place of s o define a (¢,671)
program for 9. Lt (1,6,6) be ts frst instuction. Then we replace this frst
Instruction by (i€ 0.,0.0). The replacement turns the program into, while
preserving e program size, an (5,¢) program for o

“The constuction Inthe case when 1 an V gate usesthe same dea. Let
& = =9, 0} = ~g1, and g3 = ~gs. Then g = ~’ and ¢ = g{ Ag5. For sl
fotes g and a1 €8 € H, a (6,0) program for 915  (6,€) program ot ~g. So,
e bl an (e, 5-1) prograim fo g and then tepace s st nstruction,say
(660, by (5,€5,0.4). That turns the program into, while preerving the
prograim size, an (5,) program for /, which is an (¢ programfor .

O Lomma 7.7

To complot the preof, note that NC' ciruits have depeh Ollogn) and
that BOUE = O(no#¥). Thus, the rsultng program has polynomial
sne. 5}

7.2 Width-5 Bottleneck Machines Capture PSPACE

Lot & > 2. Recall that SF s the chass of lngungos L for which there exists
some polynomial p an some polynomial time computable function 1 : 3 x
5 M such that fo svery 2 € it holds that

zeLes (fa1700)o fa 0 t0) 0

10 (2,00 (1)

By translating Theorem 7.2 to polynomial space-bounded computation, we
show that the power of SF is exactly that of PSPACE.

Theorem 7.8 SF = PSPACE,

of 2,005

In Theotem 7.2 besaching progeams e shown t be abio to simulate NC'
ircuita, In Theorem 7.5 ather than use a bottlenack machine o simlate
PSPACE machine, we construct a polynomial-depth crcuit fom an fntance
of QBF, a canoical complote langrago for PSPACE. We then show that a
Width-5 bottlneck machine can evaluate all such circis and determine for
ach given instance, Whethor the instance is » mermber of QBF.

Proof of Theorem 7.8 SF; C PSPACE holds because a polynormial
space-bounded Turing machine can, by cycing through al counter values,
computa the prodict of sl theexponentialy many mappings asociated ¥ith
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J4l1]# £ for every i of distincs intervals 1,7 € . In Phase 2, CULL
Slecta from T disjlat subsets, Ty, . Ty, 1 S 1 < 2(k — [r)2a(n) + 1),
Where . s guaranteed tha 1 inkervls in the £et. of I contain tgas(2)
7 1 corect. For each of th subsets, CULL makes sxactly two rcursive
calls. The output of CULL(z, ) is the union of the utputs of ol the 20
recurive cal

Below e describe the two phases of CULL, Let (5,1, 7) be an input to
CULL Lt 4= [, Suppose that 0 S 4 < k1.

Phase 1: Making f, unambiguoss  CULL execites the olloving:

« While there exit. two intervals I & T such that [ < ' € T and £{1] =
1[I, i the smallest such pai (7, 1) n lexicographi order and elminate
ThomT.

Let I be the st T when GULL quits the loop. We clim that ' s+
efnement of T for = undet 7. To e why,sume that 7 i corrct, Suppase
it T contins o itervale 1 = o and I = '] such that | < I and
2] = J:T1 Then 7)o s by S f an nky i 1) s s by
" Sincs 7 s corrct, 11 s satisfed by S i and only i 11 issatisfid by
. Alt, 7.[1) i s by S f and cnly i (1) satishid by S. S, 11}

i by S and nly 1 11 1 s by 5. Then, by equation 14,
wehave

Uman(5) 2 4 () 2

In pasicular, wnua(s) > U = Unua(z) > . This implies that ciher
(2] < o Upan(x) 2 W/ Sineo > v 2 u, I hods chat cither
ma(2) < 4 of Wa(s) > 0. This, Ueua(s) £ 1. So, T — {1} Is o re-
Anemens of T for 2 under 7. By part 3 of Foct 112, each time an inerval is
eliminate by executing the sbove agorithm, the rsuling st s  rfinement
O T for = under 7. Thus, T i o refnement of I for = under 7

Phase 2 Refining T' CULL splits I inko two groups 8 and &, where
for each b 0,1),

S=(1er|BN0,... 0)

CULL refnes 8 and 8, sepasatel.

Refning 85:  Suppose 8 is nenempty. CULL computes an integer m > |
and » soquence of intevals [y, I € Doy y < F3 < - < I, 28
Tollows

« Iy o th lexcographic minmum ofthe nervls n B,

© Forcuch > T such that I s defned, et 11 = (1€ 8| (421 <5 <0
QT A QuIL] = O} 16 51 =, then 11, is undeined. 1 S % 0,
$hin Iy i3 the eicoraphic i of he tarval s i1

o s che largen, ¢ s that Iy s deine






index-63_1.png
32 Optimal Advic fo the Sem-fossbl Seis 49

Theorem 3.5 P-se € P/quadratic.

(G we gt by with  subauadeaic number of advice bit? I this sction,
e il s that inear-szed advice suffices,if wo e allowed to use poverful
advice nterpreers. I partiular, racher than use advice ntrpreters running
in detrminiaic polynomial time, we Wil us advice interpreters ronning in
probablistc polynonial time (Theorom 3.7) and nondeterministic polyno-
mial tme (Theotem 3.10). We will cventually show that lncar advice is the
best i can o no strengeh of dvic interprote can always work success.
fully on the semi-feasbl sos using sublineas advic,

Recall from Sect. A6 that to prov that L € C/lneas we must provide »
function g and & set A € C such that

(olel e (ol ©3)
and
(20 & inear) (1) Lg(o)] = o). @)

We now prove that Pael € PP/linear. That s, linear advice suffices
o accept semi-feaibl set, iven advica intrpretars that are probabilistic
polynomialtime machines (ne Sect. A12 for an introduction to PP). Late
i this section, we will extend this tsul by showing the cve stronger clim
that P-sel € NP/linear.

Pause to Ponder 3.6 Prove that Pl C PP/lincar. [Hint: Count]
Theorem 8.7 P-sel PP lnear

Proof Lt us b gven  se L € Psland o Pscor funtion f fr . As
befoe, withou s of gneraity, we may asoum tha for sl o nd bt holds
hat (o, ) f(br). Ot advicefuncion ill b the consusfnctio of L at.
the given engeh ., o(n) = [1L=] padded if neded with leding s 50
4310 be exacly n + 1 i Tong. (This s enugh bissine 0 < [L < 2%,
2o here are a mast 1+ 2° posible coness valuo) Conider  sring y of
ength . Iy € L, hen

Ielm =121 A £(0.2)

M 1L,

a5 only clements in L can defoat clements in L according to 8 Preloctor
function. On the other hand, f y ¢ L, then

el = el A S 2) = 21> 2=,
a5 cach clemons in | L= defats , and also  deeats . Our advice inter-
procacion set—the A of equation 3.3is defned by the ollowing, where 7.
nterproted as the binary representaton of a inter.

L) m > (2] £ (2.2
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s 0 thecorrectnes o our algoithm, note that aftr Stage O it certlaly
holds that
the cllction, C, contains some stisfiable formla
- a2
Fis satiafable,
sinceafter Stage 0 formula F is the ony formulain the collecion. Note also
that, for each 1,14 € m,
the caletion npat to Stage § contains some
satisfiobl formla
= s
the calletion output by Stage  contains some.
satsfinble formla.
Will now arguethat this s 50, via sing  self-reduciilty-based argoment. In
the present context,the relevant selfreduibilty ac i that fo any formula
F containing v as ne of its variables,

P is satsfinble s
((Flo = True] i saisiable) v (Fly = Flse is satisiabie),

sinc any satisfying asigament must asign some value (0 each vaiabl. So
Step 1 ofStage  docs no damage toour invariant, equation 1.5 What about
Stepe 2 and 37 (Interms of the connecton to Step 1, It s important to keep
in mind that i for exarmple, formua F having variable v i in our coletion
it the start ofthe stage and is satsfible, then i must be the case that

(P

True i satsfinie) (s

Fale] i saisiable),

01t mist be the case that
o(Flv="Truc)) € TV g(Flo = Fulse) € .

Ao of course, T C 1°) Steps 2 and 3 “prune” the formula set as fllows.
Bach formula. / from Step 1 1 kept unless either

a o e,
b 9(1) € 1°'but some h € € has ) = (h).

Both thes ways, (8) and (b} of dropping formlas are harmlss. Recal hat
ST<LT via function g, nd s01f 1 € SAT then () € T. However,rogrd-
ing ()T € 1750l g(/) ¢ 1 then (1) £ T, and 0 / ¢ SAT. Regacin (b),
i79(/) = o(h) and h has aleady been acdd tothe colection to b output by
Stage (), hen there is no need Lo utput | as—since SAT<AT via reduction
9w kaow that

JESAT > afeT

and
hESAT > o €T,
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Thelr oacle conssts of & colapsing compenent (PSPACE) unioned with an
extraordinarily sparse diagonalizing companent.

Theorem A.2 There i a reasonabl (i, P* 4 NP*) oracle A for which
A" UPA (hat is, thre ar no on-o-one one-vayfunctions) et here are
sets that are <54 -complte for NP and are non P -tsomorphic.

“This does ot imply that the One-Way Conjcture s fals, though . does
pen that possibility: This theorem, bowear, suggets that the conjecture
nlikely to be proved by standard Cechniques.

There i  ‘promise” n the defiton of UP. In pasticular, a UP machi
must have the property that on each inpat, ts mumber of accepting paths is
ither e o gero. There is no known way to enumerate all machines having
this property without aso enumerating machines not having this property.
Since such enumerations are a central tool i proving the existence f com.
pltese [Sips2 S50 BC502,Borad],this precludes the standard method of
proving that the clas has complete ses. In fact, there are relativized worlds
i which UP lacks complete sts ([HH38a], see sl HIV33).

“Attempts 10 find an NP analog of Ricc's Theorem have fntead lod to
analogs of Rice's Theorem for UP (unainbiguous polynominl-time) and its
constantambiguity cousns. Tn particular all nontivial counting properties
of ciruits are hard for these clsses ([BS00,HROO], e also [HT)

“The class FowP, defined by Allender and Rubinstein [AUS6,ARSS], is an
analogue of UP that resricts machines ot to one accepting path but o at
‘mst. polynomially many acceptng paths. Clearly, P C UP C FowP C NP,
‘and Allnder and Rubinstein [ARSS) show that P = FowP if and only if ol
sparse sets in P are P-printabie

Defnition A3 L & FewP if thre s a nondetermiistic poynomial-time
Turing machine N 4o that N aceepts language L and for some polymomial ,

(42) N(z) has ot mostq(il) acepting pat]

Many suthos prefe to use the term wnambiguous computtion to reer
to UP, and reserv the term unique computation for the class US. Note
that there i & key diffcence between UP and FowP on one hand, and US
o the other hand. UP and FewP are indeed about computation that bas
a limit on the amblguity (the number of solutions .., accepting paths, of
the underlying machine). In contast, thovgh the machine for a US set by
definition accepts exactly when there s exactly one accepting computation
path, it i legal for the machine on some inputs to have huge numbers of

it merely i the case that such Inputs are not members of

T s S s P.printabef there s olymomia ime Turing machine M ruch that
forsach m, (L™ prins il lrnte of  of et sk ot  [1V84]
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et is whether f(z,7) = 2, whichisabways true. Note also that f L contains
o length n elmens, chen Hy

W now state the advice funcion and dvic iterprete for sesi-fessible
st L. The advice function, (n),outputs Hy, coded n any ixed natura way.
Clearly, sqition 3.2 helds s, for ench n, H, has . most -+ 1 clments,
cach n bit lon. Our advice ntarpreter st for L it

A = {(zs)| v is o (possibly empty) list of length n eloments
. e and o soma ¢ elds tht (43 2) = ).

Ac P, as £ i » polynoniaktime computable function. Docs
cquation 3.1 hold? Let = € L. Then (s, () € A by ou choie o 9 and
A'Let’s ¢ L. Let n = 2] Suppose (1, () € A Then for some Ay € H
it st hold tha (1, 2) = 2. However, ll clemsents of Hy ae in L=, s0,
ince i  sclctor funcion, the fact tht = s dfsated an element of
mplesthat 1€ L. S0 i ¢ L the (2,0(1) 4 a

Pause to Ponder 3.3 In this section, we se hat Psel € P/poly. Con
one, based on the o precnted n this section, 10y o bit more bt the
umber of advice Vi han merly tht @ ool ruier (e “ly” of
Plioly) of advic bt suice For cxample, 6o O(1?) bis suffe? That s
oty it had that P-sl P quadratic? Hin: Consderthe cardilty o s
ets I, i the prof f Theorm 5.2, o he mamber of bt . uch lmend
of o

Lookingtouars the toic.of the ezt scion, o ca also sk s there
claas C such that Pl  C inenc?

3.2 Optimal Advice for the Semi-feasible Sets

In some sense, computer siene a th study o the ffcent hadl
information. I thissection we ak: How much ffotation do semi-fesse
st contan?

I the previous setion, w s that sl P/pely. Howeve, we proved
it more. The actual advie foncton wied t ength n was o coding o ot
st 4 1 stings of length . Thus, () bit reenly uficint. S0 we
e the Fllowing theorem.

Defnition 3.

L Letlineae denote the closs of all functions f such that 1(n) = O(r).
2. Let quadratic denote the class of all functions 1 such that 1(n) = ().

TWe could sl have deined st o be sl functions / soch that for some ¢
and il n we have f(n) = cn. Though inear # nar, i s not hrd (o see
that P/lneas = P/nas, 4 the length of a inear uncton sl hods tte
information- 4t mast O{1ogn) it Amlogous comments hold for the quadratic
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26 Lms (a0 o £ 0400) () = 1
For cach £ € 57, define

Qi
Then,forall 2 € 5

(190D} o - 0 (2, 0P0D).

zel o= Qlal € (hvar)

Define N (0 be the nondstermiistic Turing machine that, on input 2 € 5
guestes  sting y € D7) and then outputs rank(y) f 1(2,3) € {vos,vez)
‘and outputs 0 otherwis. Y can be polynomial time-bounded. For ol € 5,
N on input 2 outputs & nonnegative intege long each computation path.
Lt g be the OptP function defined by N, L., for all 7€ B,

o(e) = max{i € N some path of N(z) has i s it output)
For each 7 € 5° and ench 2 0, deine
Mz, = e 2 € B Aran(s) 2 414 S(2,2) = (1 D)
Define

(@] ze 5 nizon
(6= M(x.0) s an ven mmber) v
(0542 pl2) A (st )
M(e.) o n oven namber) v
(15123l A (2.5t O)
(2.9 is an odd mumber)).
Then A€ G, To soe why, It

A= ()| 7 €5 A0S <20 A M(e, ) 0dd mumber)

. By part 2 of Proposition 48, GP is closed
reductions. So, 4 € GP. We naw prove that the mermbership in L
can b decided by the membership A with g s advice.

Fact .41 Forcvery € 5%, 26 L = (5,0(2) € A
Proof of Fact 7.11 et x € 5 be fixed. We consder the following three
possibilto:

«gta) =0,

1< 0(2) < 20D and (2,8t (0(2)) = v, and

 12.9(0) £ 220 and J(oustrpyuy ()
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RP and cotP ace classes similas to BPP, but allow only “onesided”
error (see Fig. A16). ZPP in the class of ianguages sccepted by zero-
o computers whose expeted runming times are polynomial. Equivalently,
ZPP = RP () coRP [GITT 2ac52)

Probabilsic casse play & cenralrole in complexiy theory and comput-
g For example, though it is no known whether testing primaliy can be
done deterministcaly v polynomial time, Adleman and Huang have shown
that primality i in ZPP [AH92|

A.12 PP, C..P, and SPP: Counting Classes

Alanguage L sin PP (Sim5 Gil] e
Turing machine M such tha, for each z,

a8 probabilistic polynomiaL time

£€ L «ms M(z) accopis with probabiliy a loas 1/2.

A langunge L is in C..P [Sim75,Wags6] if there is  polynomiaLtime com-
putabe function / and a NPTM N such tha, for each 7,

Tel e Haccyle)

(@),

where #acey (z) denotes the mumber of accepting paths of N on input 2. A
ngusge L i in SPP (OGS FFK94] f thre is & polynomiak-tme computable
function / and & NPTM N such that, or each =,

¢ L = facey(s) = f(2) -1, and

2L > facen(s) = fla)

Many counting classe have been defined and shown to b important inthe
study of previously defined notions. The classes wsually attempt to extract
out the esence o some particular computational task. For example, we may
oosly think of PP as encapsulting the power of majoriy testing, and of
(C.P a5 encapsulating the pewer of xact equality test

Thogh BPP is & quite strong candidate for the tite of “outer imit of
feasible computation,” PP is not. The reason i that PP has no bound on
e error. I fact, for PP machines, the diflerence between ceptance and
reoction i o slighi—one over an expanentia function of theinput—that we
would need an exponential number of Monte Carlo tsts o get any useful
information. Howeuer, if one were wiling (o do an exponential amount of
work, one could just 4 well exactly save the PP problem by brute force.

PP, however, does have some nice propertie. In paticular, there i no
“promise” bt fnto s definition, and thue i is ot hard o show that i has
‘complete ses. The samo also holds for C..P. However, i contrast, thre is &
“promise” (ses the discussion in Sect. A.9) i the defnition of SPP.
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the enumeration i, s, . .., each machine N, will ppeat ifitely of-
ten. Our proo proceeds by disgonalization, in stages.

Stage & At this sage we define the contens of L
L0=0 and move on tostage £+1.

1 £, then do the flloving suite of smulaions fo at most 2 steps
(cota). I this mumber of seps 1 reached and wo have not completd the
following,then et L = 0. Say £ the (i, A)th clmen of @; that i, deine
and k (which both willdepend an £) o be the unlaue ntegers saisfying
Wb =15 € @5 < Bl

Consder 1. Fo each of the 2 potental advice
do the olloving N

For cach of the 2¢srngs z of ength  run ¥ (). I none of these
2 runs accep, then et rightmat, = 16, Otherwise, et

LI Q, then set

ings v oflength £,

rightmost, = max{z| [s] =

ARy ((z0) scceps).

Sinen for each of the 2¢ potntial advice srings of length £ we chose at
most one “ightmost” string,the total umber of Hghtmost stings is ot most
2050 the et

o= (S U0) - (e] Gy € 5 fightmost, = )

s not empty: Let i be sn lement of J, for example, the lexicogeaphi
smallest clement of J. St

(1= Il A S s ©8)

End of Sage ¢
By construcion, equaton 35 hads, and by cquaton 35, cquation 3.6
holds, By the fact that we allow at most 27 steps in the simlation, equa-
ion 3.7 bk, I remais o show that L & NP/ Suppose L & NF/n via
NP language L. Let b such that L(Ne) = L. Note that, for ench K’
Fieay = No. For all suficienly argo ¥, in stoge (¢,K) the comsiruction
complets without being cut off by the 2* tep bound. Thia is because the
stage £ that satisfis () = (51 € @ 75 < &) requices about

(o)

ity

stops (or some positive constants b and ¢ that are dependent anly on ),
the theee terms respectivly being due to the loop over advice stings, the
Ioop over npu srings, and the simulation of an NP machine (converted (o an
EXP brute-force machine, and allowing quadratic ovethead fo the simuls
of that maching on & unversal EXP machine). For al suffcently large , this
1 s than 25' So for a fxed ¢, it hlds that,for sl but fnitly many K,
the stage £ where £ s the (¢, )th clement of Q wil use no more than 23
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16w = vl
N0 - a2 ) O NB(W) - U1 - i) ©
MW} - - W) -+ @ X (0] - W a)

s essy to e that the product

SG1) 0o 607

is oqual to R The Iabels A and Ay can be easily computed. The mumber
of terms n each value of 1 i bounded by 2+ 1 (the maximun is chieved
when 1 = b,6,07-2 for some b, € {01,10,11}). So 1 is palynomiaktime
computable. Thus, QBF € SF, Hence, PSPACE C SFs. O Theorem 7.8

7.3 Width-2 Bottleneck Computation

In the previous sction, we showed that width-5 botleneck Turing machines
capture PSPACE. Here we study the complexity of width-2 bottleneck com
putation from three angls First, we sk what pover plynomialsize width-2
botdleneck Turing machines possess. Second wo ask, in regards (o width-2
computation, how impartant the order of the nstructons . Then inally we
ask how much computational power s added if the machines are allowod to
behave probabilsically. I the fllowing discussion et vy (respecively,v-a)
denotethe constant function in Ms that maps both 1 and 2o 1 (rspectivly,
2)

7.3.1 Width-2 Bottleneck Turing Machines

©OpCP i the las of all anguages L for which thereexsts alangungs A € GP
and a function g € OpiP such that for every 7 € T*

zeL e (ngfe)) € A

The goal o this section is to prove the fllowing theotem, which states that
the class of langunges accepted by polynomialtime width 2 botleneck com-
putation i dentical to GOpLP.

Theorem 7.10. SF; = GOpP.

Proof Throughaut this proof we use the following notation. For each string
9, rank(y) denotes the rank of y in V. Also, fr each imeger n > 1 and i,
1S 6 2%, st i) denotes the string y € 5™ such that rank(y)

We st prove that SF, C GOptP. Suppose that L € SFs. The
polynonial pand a polynomial time computable unction § T x B* -+ My
Such that,fo every 7 € 5,
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ZPP, P, coP, and BPP - Eror Bownded Probabilem
Selctd Fcts and Theorems

TP CPD < AP ) R 5305, € BPP. i
2 i
h o sl
L 2P o, (AKO1, e e 85 G257
5. BPPOTT - BrP ko2 z0c2]
& grpen aack
e (s Chi. 1)
& BPPeF C peri (oo Chp. 1)
o pirc np (oo Gy 1)
10 NP E bbb —» P NP s
1 NPE brp = PhC ar. 1-:5:‘
32 Primn ¢ P i
11 A€ PP, then NPFP € NPASSAT. . picol, NPV

N [scseh]

1411 #GA, the functon counting the mamber of stomorphisms of graphs
i polynomial e computabe cnumeratr then the Graph Liomor.
phiem Problem, ((G, )| G nd H o somorphic graphs) belongs Lo the
e TBecron]

Fig. A.L7 ZPP,RP, oRP, snd BPP—par

Most computer sienists,if stopped on the sroet and asked for » dei-
ition of “ensible computation,” would say "P" and walk on. Yet, thee it
Snother possbiity: BPP. Suppose the errr probabily of the machine do-
scribed above i, on each input =, bounded nt by 1/4 but rather by 172
(i no hard o show—simply by taking polynomially many trisls and re-
Jecting o acceping s the majorty do—that each BPP language doce have
st low-error machines) For al suficiently large = (snd, afer ll for ol
‘ther 2 wo can in theory just se table Jookup), the probubilty the answer
s wron due to this 172 srtor probabiity is s i ractise than the prob-
abiliy that an earthquake lvel the building o that the physical parts of
the compute suddenly fil. Thus, many peopl aceapt low-error probabilistic
complexity clases (1., ZPP, RF, coRP, and BPP) asintitively “fssible
Indocd, undet a certain very platible complexity-theateic sssumpton, it
would oven llow that P = BPP [IW07). On the other hand, to presen a it
picture wo should mention that the assumption that a computer can firly
enerate random bit i less innocuous than it seems (however, ther i in
tresting work on dealing with biased sources, see, o5, [VVSS]). Also, it is
important to sress that BPP s charscteize i terms of the probabiity of
acoeptance being bounded avay fom 1/2, not by the propartion of sccept-
g paths being bounded sy fom 1/2. The latter notion seems o define
larger class ((HHT97], seo lso [JMT06, AFF+01)
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=] o o
=[x o
ESIE o
2 x o o o
' o o
o o
- et oo 1 L

Forcxampl,the gt 2 o i cxmple
oo S L 01§ L 10§ L, 1 £ L

bruteforc serch whether min(x,) € L. Thus, /i o Paelectr for Ly so L
e s, Q" Claim 324
Proof of Claim 315 Let Ny, Ny N, ... be a standard, easly com-
putable lst of NPTMs (nondetermiistc plymomia-time Turing machine)
s that
NP = (B] () [L(N) = B).

Let () be a fixd, nice, 21y paiing foncton. Let the enumerston
R, N By b such that, fo each 1 and k, Nz I8 simply N, So i
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zeA < [ifyly €2 A (z,y) € B is an odd mumber.

‘We can choose the polynomial r so that it s stricly incressing, .. for all
20, (1 + 1) > r(n). Tako k to be the smallst itegor such that, for all
13 0,knb £ k> r(n). Well replace r(n) by #(n) = knt + & and teplace B
by

B

Then
Iyly € 270 A Ge,a) € Bl = l{y] v € 570 A (a,0) € Bl

Let £ be a polynomial such tht,for all = € 5 and i, 0  § < 2970 — 1,
6e.1 < ). Define s(n) = 2pn) + (I,
Detine £+ 5 x E* - My as follows: Let 2, 1w € 5

o Iful #s(z), J(z,) = b
< 1 = ) e e b the decomposition ofw such ehat [y = |+ =
aal) s ] = /(1 rnk(y) ~ D). Then the vau of /(2,0) is o
e 2 follows:
16N on input z slons path = outputs rank(y) ~ 1, u € 0%,
(rak(s) ~ 1)) € B’ and v € 0, then S(2,0) = v
<10 N on input = slong path  outpuis rank@) - 1, u € 0%,
((zzank(y) - 1),0) & B, and v e 0, then (2,0
SN on input x slong path = outputs rank(s) < 1, w ¢ 0,
(. rank(s) ~ 1),) € B, wnd € 0, then £(2,w) = (1
Iy, 4, a0 atisy none ofthe thrce condtions sbove, then /(z,u]
B
Ltz € £ be fixed and let n = |z Lot § = ste(o(z) + 1) snd It
£ max{= € D7) [N(s) output () s thecomputation pth ). Thn,
rank(3) = (), an for all 2 € DA and w € SO0, 1 53 <ur vz,
then f(z,yrw) = . Also, /(5 G507 57) € {vcs,vea). So,
1o o f(a,0%0)
A A ——
et a = eafe k) 1) od .= o) 20) o T, o
Allue T and v e T\ (0F),

() |3 € 707D A = 0705070 (g3 € B,
icly increasing and, for ll 2 € 5°,

Segi) =1,
S,

Je g1 o . oz i)
(2, §5010%) o f (2, Giuze10%) o -+ o fla,§500") oz, Go0?),

where for every 1§ £ 2%, u = stri), . the ith smallest string in
2 For each i, 1S 4 2%, k', = (12) i ((,0(2)) w) € B' and = Iy
otherwise Note that
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First consider the case when 9(2) = 0. Snce o(z)
S € (1,012} o,z € L o= Qs

(50)€ 4 &= M(£,0)is n even mumbr

0, for all y € S0,
T2 T holds that

and
Qla] = Iy <> M(z,0) is an even mumber
Thus, 2 €L = (z0z) €A
Next conside the case when 1 < 9(2) < 271 and f(x,
V. T holds that Qfr € {v-a,vea). So, 2 € L <= Qla]
that

(9(a) € A <= M(z,3(z))is sn even mumber
i
Qla] = vy = M(5,0(2)) is sn oven mumber.
Thus, 26 L o= (x,9(a) € A
Finally, comsider the case when 1 < g(s) € 20 wnd

(25455 (9(z))) = vz It holds that Qfz] € {vay,vma). So, 7€ L &=
Q0 =550 T holds tha

(2,002 € A =5 M(z,9(z))is s odd momber

and
Qi) = vy 4> M(n,9(2) s an 0dd mamber.
Thus, 2E L o> (z,000) € A Q Fan
By Fact 7.1, we have L € 60peP.
Next wo prove that GOPLP C SF;. Let L be a langusge in GOpLP. Let
A'be's language in 6P snd ot 9 be » polymomial, sch that A and g oinly
Vithess that L € GOpIP, e, for all 2 € B,

zel o= (rgle) € A

Since g € OpP, thte i polynomihtim nondetarminstc Tring machine
0 ha, o avery 1 € 5,30 i the i of th ot et of the
macineon gt . By dfion, o evry % € 5, N on inp 2 omputs
~ omegtin it log each dompueation pth. Lot p b plynomil
T s he eime of 3. Then o ll 2 B, v outps sing of
N on input z has at most p(|z]) bits. This implies that, for all z € *, each
o oot 1 . the el 0,300 1. O sh ther hand,
ch 2 € 3, th rank of » srng hvinlngthpz) s i the nervl
D] S, for nch = € I, w crrapand BRI o {0, 27D — 1)
iy € (D eprsat the g rek(y) - 1
We may s that st ¢ach computaton sep, N s o posible (ot
necarly dine) moves. T, fo sl 2 € B ach somputuion i of
¥'on  ca b il ancoded s o o of gt P, Sne 4 € GFr
Chre s  plynomit snd B & B uch st o o 3 € 5
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PP, GP, and SPP - Gounting Classes
Pomer
"PP. Usbounded aror probabili.
P! Evac counting
SPP. Gonersined UF.

720 tha o anch = i hotd thet = € L i and oy i
A 2) s > 172
e s & nendotarminstic polynonial-imo Turing ma- }

her i . peobatilitic plynomiak-tima Turing mac m}

o
i
e b s ppe e
oo (JEAETER RS
if and only if #acey(z) = f(z)
e sem e
[ e e v
ar [N RS RS
e R O
A

and SPP—part |

Fig. A8 PP,C.]

A.13 FP, NPSV, and NPMV: Deterministic and
Nondeterministic Functions

Wo say that a function is n FP if it is computed by somo deterministic
polynomialtimo Turing machine. Functons in FP must be singlvalued,
but they may potentaly be partial.

The clases NPSV and NPMV capture the power of nondetermin-
fstic functon computation. I partiular, consider any nondeterminstc
polynomial-time Turing machine N. On any input =, we wil consider N
o have a (posibly empty) setof utputs. Namely, on input 7, eac sring y
tht appostson th worktape of ¥ alog at et one computation pth that
halts and accepts i considarod (o bolong o th output et A function  is
sid 10 belong to NPMV.if there xiss some nondetermiistc polynorsial-
time Turing machine N such haton each nput « he utputs of  aro oxaely
thocutputs of . As  notation, o usast-1(z) to donoe {a a s an output
of (2)) Forexample, on inputs 2 where the patial function /() s unde-
e, wo havo et (<) = . Note that functionsin NPV may be partil o
may bo ota, and may bo single-vlued oF may be mltivalued. Note that the
multiplicities of sppeatancesof outputs do not. conceen us here i, on input.
. machine N outputs 101 o one path and outputs 001 on seventeen paths,
s st ofoutputs i smply (101,0011).

NPSV denotes tho se of all NPAV functions f that ao singe-valued,
. fo ench nput 2, st (2)] < 1.
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corcesponding o the node specified by v, denoted by F(), is determined as
Tl

10w s the empy stsing, F(u
<122 <20 1), then

Quartnss  Quzaplbabe - b bam T

whee forevery §,1 €1 < 2m, b, i the ith bit of
6] = 2, then

F)

F(0) = glbabe o banesiba),
where fo every , 1§ < 2n, by s the ih bit of v

Next we label each odge and each loa of T by an element of M. For
ach edge ¢ = (1), wrlte A5(u,) o denote the abel signed to ¢ and, for
ach Iea , write A (u) to denote the lbel asigned to . Let  be any node
Of T Lot P(u) denote the product of th labes,defned sa ollow:

o 16w s leaf, then P(u) = My ()

o 161 not a lea, et 1o, 1, 3, be the fous cildre of , enumerated from
sght to et For ench i, 0 < § < 3, lt = Mg, and A, = Ag(0,).
Then

Pl
Bro Plws)oaso a0 Plsn)oaze
815 Plon) 001 0o Plun) 000,

In other words, P(4) s the product of he all labels that are encountered
dring th n-order traversl of the subtreerooted a u,who atevery nonleal
Dode,the children are visited from right o lf.

We ssgn these nbels are asigned s tha, fo all e holds that P(s) =
438 F(u) = True and P(u) = I otherwise. To accomplish this, we use
the consruction in the proof of Theorem 7.2. Recall that, to construct
progan or an -gate of an V-gate,we concatenated fourprograims that were
constructed recursvely, and that we inserted into each of the four programs
o constant mappings, one at the beginning and the other a the end. The
four childsen of a nonleaf node correspond.to the four components, s0 for
each 1,0 < 1 < 3, the downward edge to the ith child of u s Iabeled by the
Constant mapping that i nserted at the very beginning of the ith component
‘and the upward edge from that child is Ibeled by the one inserted at the
very end.

More specifically we determine the labes a fllows:

1. For every leaf u, 1t s labeled by  if the formula corresponding to it
cvnluates to 1 and Iy otherwise
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FF ~ Sharp P (Gounting Sotutions)

Pover
Countingsolutons.
Detiition
# = (] (3 mndeterminiti polymomiabie Turing machine ) (V2)
@) = #acey (@)
Background

5 W et stdied by Vit [Vi70), whe showed tht counting vesions
. only of NP-compeee problens bt aao of e P prbles an be AP
Complee

Compiete Problems
"HSAT, th funtion mapping fom boole frmulas o their numbersof sl
Tons, i  rprescatatve #F funtin: P71 = PSAT

Fig A14 gppart |

A.10 #P: Counting Solutions

One potato, teo potato, thre potat, four,
Pive potto, siz potato, seven potate, more
~Children's Rhyme

#P = {f| (3 nondeterministic polynomial-time Turing machine N) (¥z)
@) = #acey(@).

where #acey (2) denotes the mamber of accepting paths of N(x).
AP i the clas of functions that count the accrptng paths of nondster-
ministic polynornil time Turing machines. For example, the fonction that
mape any boolean formula t its mumber of satisying sscgnments is 3 4P
function To reate  Inguage cass, as opposed t a function clase, we usually
discuss PHP. Toda [Tod1c] s shown that P#F 3 PPPH (Chap. 4).

P s closly related to PP, probabilsic poynomial tme: P
P** [BBSss]

The possbity of approximating #1 functions has been much studied
Stockmeyer [Sto85] shows that A% machines can approximate #P functions
within  tight facor. Caiand Homchandra ((CHOL,se oo [CHS0) and,in-
dependencly, Anis, Beige, and Gasarch [ABGOO], show that he range of #P
functions cannot be reduced to polynomia size unlews P = P#" (Chap. ).

WP s inimately connecte to the complxity of ranking—determining
the positon of clments in » se (GSOLHR0 Huy00,BGS .

Though #P ituitvely is the counting analog of NP, there aze some cv-
rious flaws in the analogy. Valiant [VAIT0a] has shown hat even some P
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longth zero paths suffce. So n all cases sach iode i reachable via paths of
Length ot most [log k]

Vo = Rroguo(0) i o result that s strong enough to allow us to prove
thefortheoming Thearem 3.10. However, we prove s Theorem 3. & stronger
soalt that gives more nsight nto the shortness o paths in tumaments, and
thus into the nonuniform complexity of the sem-feaible ets.

Pause to Ponder 3.8 As just discussed, in cach k-tourmament thee is &
node.from which ol nodes can be reached v paths of ot most igarithmic
Length. Tmprove this to he claim that in each A-towrmament there s o node
from whic all nodes can b reached via path of lenth about most O1og” )
Beyond that, improve this futher to the claim that in cach k-tourmament
there 15 o node from ahich ol nodes can b eached uia paths of constant-
bounded length. [Note: Don' fist peck ot Theorem 5.9 belo, os it wllbias
‘your thoughts on this by showing you the value of the constnt |

Theorem 3.0 If G is a k-toumament, then ther is a v € Vo such that
Vo = Ralo).

Proof The rsult abviouly hokds for Ltournaments sod 2-tourmaments
Inductvely, sssume it hold fo al £ tournaments. Consider an arbitray
'+ T tournament, G. Lot be a nodo of that tournament, an bt G* bo the
Etourmme induced by the nodes of G othr than . By inducton, shere

o bin G such that R ) = Vo
1 the edge between a and b point £o @ w e dose, as in tht case
Ralb) = V. So It e hncelorth aenume that th e betworn @ d b
pointa o b1 a € By (8) weaao sxe done, s tht case Ra(b) = V. S0
Tet s hncetoth e sssume that o & ().

Howeve, i o ¢ Rao(3) hat mpls that, o ench node < € Ry (), the
<dge between o aad ¢ poita from a 10 . This n turn implies that H(s) =
Vo Why? Wo already know. (i light of our “henceforth” seumptions)
i) € Rug(a). Wo sl have Ry () ~ () € Rag(o), nomel
o length s path from b ha sa s second e . node. from Ry (3
but ll such mode ace sl ponted to by a. 5o, snce Vo = Ry (9 U o),
wehave Vo € R o(a). a

Theorom .1, tourmament they resst, yikdd s consequencesbout the
somifeasible s, Theorem 32. Anulogously, th toursament thory reslt
proven sbove, Thearem 33, b yieds o promised reul about the sl
ensbl et sl C NP/l

“Tha ineasadvice a each ength s sisply the slement (whos existene
s ctsured by Theorem 39) that eaches al slements of L* vie xtremaly
shortpat. The pondetermiiti ftrpretes el Gesssth sort pahs

Theorem 3.10. P-sel € NP/liness

Proof LetL e Psd,
s of generaliy that

Pscoctorfuncton /. As sl we ssume without
5)[1(a,) = F(b.2). Assume alzo that the specal
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« given input . For the other diection, we will show QBF € SFy. Then,
ince SFy is closed undr polynomia-ime many-one reductions, i follows
that PSPACE C. SFs,

Defne a, 5. 7, and o, .. 6 as n the proof of Theotem 7.2. We wil
deine u polynomialtime computable functon f - £ x B+ -+ S, such that for
every n > 1, and for every fully quantifed boolean formula ¢ of n vaiables,

061 0 - 0 J(6,0°%) = € QBF and fs othervise.

“This will establsh thst GBF & SFs. Since QBF is <7, -rducibe to QBF, we
will then have QBF € SFs. In ordt to conatruct uch  function we will be
cealing up the proot of Theotem 7.2, from logarithmic depth to polynomial
epth. Lt ¢ be a ully quantfed boolesn formula.of the form

Qe Quraplan, o 2a).

€ can b naturally views sa » bounded-funin boolesn ciruit in the
f fll inary tre having hight n with 2" inputs, whare the inputs of the

ircuit are (0,0, .. (0, .. 1) and, for each i, 1< < n, the gates
St lovl 1 (distance§ rom the Input evel) are AND gates f Qo1 = ¥ snd
are O gates if Quens = 3 Cal thin circuit Cc. Since it s 4 tre, cuch

fate of G can be specfed uniquely by the downward path from the root
(che output gate). For each y € ()57, tho gate spocified by y evaluatas the
olloving forml:

« 16y is the empty sting, the formul is ¢
11 <yl < n- 1, then the formala

Quieia -+ Quenglbis - Byt T 170l

where foravery , 1§ < [y, b the i bit of .
« 1F]u] = n, then the formala is (s, .. by, wher
by e e bit of .

Wo spply the consruction of  branching progesm described in Theorer 7.2
to.Cx to buld a directod graph, T, in the shape of a full quaternary tree
having height . In T; each noneoot  is bidrectionaly connectad to ite
parent. For each nonleaf of T, wo asign numbers 0 .3 o it fourchildzen
from right tolft. Since the nodea of T ae aid out i a ful quaternary tree,
each node of T can be specfed by a unique dowrward path fom the foot.
Wrtten in binary,for evary m, 0 < m < n, the length of the path for each
oda at depth m is 2m. The empty string specifis the root and fo each i,
1S m <, and for asch = by - by € (0,1)%™, the string u specifies
the node that s reached from the root by the downward path slong which
for aach d, 1< d < m, the edge towaeds th (bae1baa)th child i selected at
depthd 1, whete 00,01, 10, and 11 stand for 0, 1. 2, and 3, especivey.
‘We et cach node of T cortespon to  flly quantified boolean formuls
Let ube a binary string such that [l Iseven and 0 < u] < 2n. The formula

forevery i, 1< i<n,
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It not hard to s that A € PP. (We lave the proof as an essy exerise
for the seader. Hint: Construct a PP machine that s t types of paths.
For cach #oflength ], we have a path that acepts f and oly I /(z,) 2.
Alo, there will be othe paths that accept of relec s0 8 to ensure that the
machine has the ight acceptance/ejection threshold ) Thus, L € PP/linesr,
s L7 € (0,1, 27), 585 noted above n + 1 bits suffce for the advice
foncton. a

Unfortuntely, PP is a vry poverful cass. PP 2 NP and, within the fox-
il of Tring reductions, PP containsthe entize polynomil hierarchy (see
Sect. A12) I turs out that such poverfl interpreters ae not needed. NP
inerproters suffce. To see this, we will ave o return biel to tournament
theory in rder ta obtain an easy but useul lemma.

Given a diected graph G, and  node v € Vo, et

Rol®) = (v)

and, for aach i >0, ot

i) = Resa e € Vo | (G € Rucro) (002) € Bl

That i, Ri(s) denotes the set of nodes that can be reached from  via
directed paihs of length at most . For any i, G, and 5 C Vs, define

Ruo($) = (we Ve| Gue 8w e Rl

Theorem 3.1 says that i G is o k-tournament, then thee i a rlaively
small st H such that Vg = Ri,c(H). That s, thre exists a small ollection
f nodes from which all nodes can be reached via paths of length st most
one. We now claim that in any & toutnament, the i some node fom which
al nodes can be reached via remarkably short paths (st how short they are
will e the topic of Pause to Ponder 3.).

Noto that i is cear, by induction, that in & k-ournament there is a node
 such that Vg = Ra1o(v). Why? Whon one adds 8 nods,cither it points
10 the node that (inductvel) resched allother nodes, o it is pinted to by
that node. In the former cae, the new node reaches all nodes, and in the
Latter case, the node that inductively sesched all nodes other than the new
node also reache the new node, in both case via suficently short paths.

Similarly, i is lear that in & k-toumament, thre s & node v such that
Ve = Ring16(v). We quicly sketch . proof. In the proaf of Theorem 3.1

we defined sequence of nodes vy .. Uy and asequence ofsets T, ., Ty
m < {log(k + 1), such that for every 1, each element in T, defeats 1. and
Uy dafeats iy 1, . S, o8 €61y § 1 1S senchable rom b by the path

[tms Ut -+, ] and every element u n 7, i reachable via this path with
xtea edge (5,1). Ths, every node is reachable from i by a path of ength
< 14 (Uog(k + 1] - 1). Also, In the special case k = 1 It I clar that
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By our induction hypothesis, P(ux) = 7 if F(w) = Trus and P(ue) = Iy
otherwise, and the same holdsfo P(u,). Then, by nverting (6 0708)
‘a0 e have th Fllowing:

B0 P oyt o
othervise.

i equal to s if F(on) = True and s squal to o

Similarly, we have the following:

+ 0 Plo) o™ 007 b cqual o s i) = T and o cqual 0 074

620 P(u) o7 007" is cqual o s i F(uy) = True and s equal to o
otharwise

o 30 Pl oy 085" i
otherwise

equal to7if Flun) = True and is equsl to 0.y

Since a7t 0 44 0ao 8 = 71, P) = 5 if Fls) = Troe and P(w) = ks
otherwise. Hence, tho claim holds for the case where @ = 3. Thus, the claim
holds for all 4,0 < d < . Q Feto

Lot i betho root of T Now it sufices to show that there s a polynomial-
time computable function / such that

(610 -0 1(6,0™),

Recall that the defintion of P(3) corresponds to the inorder traversal of
tho tren, For each 1w = by -+ b € 527\ {07,177}, wo dofine /(0) to
be the product of all the labels that re encountered while moving fom the
eaf 0 o the laf 1 durin the f-order traversl of the tree, where 13
the predecessor of w in 53, We define /(C,0) (@ be the product of all
the Iabel that e encountered whil moving from the oo to the lea 0%
uring the traversal and (1% to the product of al the labes that are
encountred while moving fom the eof 1910 1 the root, More precisly,
T w) is defned s fllows:
L 1t =02, then

J6.07) = 2 (07) 0 (02, )0
X£(00,0000) o Ag(e,00)
2 Ttw= 15, then
S = Ap(11,0 0 Ap(IT1L, 1) 0 - o A1, 170
A1) 0 A (12,13 0 A (17710, 12073),
80w = g € 5\ (050, 10), et o = ] - i, denote the
predecessor of w in (0,1}, Let 1 be the larget nteger § Such that the
prefx o  havin length 2 i equal o the pref of u/ having length 2

In other words, w3 - g is tho least common aneestor of w and '
Wo define

@)
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P, R, coRtP, and BPP - Error Bounded Probabiim
Pover
Frrorboundod probabilam.

Defiition

M o ach = ¢ bl that (3) i 2 € I then
P e 0 2 €1
{there s a probabilsic polynomialtime Turing mu}um}

thee s  probablsi polynomial-tme Turing. mnhln:}

wr-fo
s s e e
Pl i O

- {
e

whP - (L|Te P,
0P — RP [ o,
Alermte Detnton

thre is 8 polymonia ime prdicae P and a polynomial
s st i 2,

8P = (L[ 1z g = iyl < o) A Pl < 329,
2 zel = liy| Ivl < alle A Plx, )| 2 32000

thre is a polynomiat-ime prdicae P and  polymomial

s ko i
"

Gl G177 weote th seminal paper o eror-bounded probsbiistic computa-

1L ] < ) AP ) =0,
2 zel = vl o) A Pl 2 280070
Conple Lngungs
st 0 ko o s of thew . The e rivind
o i 2PF . <5 2 B o v 7). o
TR o of e e compts s (VRS s s )

B

Fig. A16 ZPP, RP, P, and BPP—part |

A.11 ZPP, RP, coRP, and BPP: Error-Bounded
Probabilism

A longuage L isin BPP if there i o probabisic polynomia-time Turing
machine M (csentilly, a Turing machine that can fp 1 unbissed coin)
such that for each z € L it holds that M(x) accepts with probabilty st least

for each z ¢ L it holds that M(z) rejcts with probabilty at least
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The proof hee is es about computation than about nformtion content.
W'l e that . it sy cannot hold enough information o disabiguts
« certin family ofsem-ensble ste.
Proof We will contruc a et L, conslting mostly of ole. That i, at
widly space length,oue st ill mche exacly some (posaiy empty) et
it of the srings of tht ength, and o ol ovher engihe il be empry (e
Fig 3.2) Yo, we ill saure that the st o of limited compleiy. Thiswil
allow us ko conuct a brutefoce sesrch, t each shorter engeh hat might
Contan srings, of exactly which srings are at thoe lengths.

In partcula, et fo = 2, and for each § 2 1, ke f = 2" Lev
Q= (for b, f, ..} We will construct I 10 ensure that the Fllowing three
condiions hai

LERe Ut UBh oo That
Tengeha from the st @

For each x and y,if x| = Iy a0d 7 Sier y and y € L, then )
2 L. That is, a each length Lis a (perhaps empty) eft.
ut of the strings at that length,

LeDTIVER”). 67
O proa conclude wit the llowing two s, and heeprocs
vy sct L satisfing cqatons 5.5, 5.6, and 5.7 is semi-

ingsin L have @5

Claim 5.1
Seasible.

Claim .15 There i a set L ¢ NP/ satisfng euations 3.5, 3., and .7

Proof of Claim 3.1 Let L satisy equations 3.5, 3, and 3.7, Consider
the olowing function /.

= il #Q

v izl ¢Q Al €Q,

min(zy) itz €Q Al € QA el =yl

minz,y} it [z] € Q Alvl € Q A el £ Ivl A minfz,v) € L,
max{z,y} i [z] € Q ALyl € QA lel £ 14l A minfay) ¢ L.

Sa)

1t clear that f i ssector functon for L, s no case above outputs an
cloment ot in L i a least one of the argurments i in L. Keeping in mind
the widely spaced Jft cut structuro of L, { can be computed in polynomial
timo as follows. The frst three cases cleoly e i palynomial fime. As to

hetst o s recal that Q@i th o 0 = (1,87 77 ). St

21 € @, 4] € @, and ¢]  ll, i mus hod that ma(], ) > 2"
Since L is compatable in tirse 3+ that means hat. » machie running i
time polynomil in z] 4 ] can easly (i the last two cass) compute by
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2. For every 4,0 < d < n— 1, such that Qu = ¥, for every nonleal u st
depth d, and for every r, 0 & r < 3, the label of the edge going to the
reh child from ight is 0, and the abel of the edge coming back from the
hid s 6,1

3, For every d,0 < d < n— 1, such that Qu = 3, for every nonleaf u st
depth d, and for sary 7, 0 < r < 3, th Iabel of the dge goin o the
7th child from rght i
Cytosayitr=0amd
eqtonitr=123,
< the L4bel of the ede coming back from the reh child

o we show that thes Iabels ive us the property we need
Fact 7.9 For every node u of T, P() = if F(u) = True and Iy otherwise

Proof of Fact 7.0 W prove the fact by inducton on the hlght  of the
subize o T rooted t . For thebase cae,supposs that A = 0. Then wis o
leat. Then F(u) = v (u), According o rule 1, v (u) equala y if F() = Troe
and squal s ocherwise. Thus th cam holds or b= 0
For the inducton stp, suppose that = f (o some o > 0 and that
the clim hold for sl viues of  les than Ao and grester than or cqual
©00. Lt u be & node such tha the subiree rooted at u has heght h. Lat
st sppos that Q = V. et .. 13 b the hildren of
enumeratad from right to lf. Note tha the dowward path from the root
o 1y i dentical 10 that {0 v xcapt that the second-to-last it i .0 for v
and I a1 or 3. Since the second-{o-as bt is not wsed to determine F(v0)
or P(u), e have Flt) = F(u). For much th same reason, F(1) = F(u).
Since =¥, F(x) = Flsw) A Flu). By e 2, P} i
(65" 0 P(w) 085) o (65" 0 Pw) o)
(07" 0 ) o3) o (05" o Plw) o).
action hypothesis, P(s) = 7 if F(w) = Troe snd Plw) = Iy
otherwis, and the same hlds for P(ur). According to the nalyis for the
cas n which £ isan AND gate o page 172, we hav the following:
0310 P(uy)ots s cqual o 5 if F(r)
© 61oPu)of, s cqul oo~ it Flw)
« 0110 P(u) 00, isequal to 4 if F(0) = True and i sunl o I oherwise,
© 05" Plun) o i cqual 0 if Flu) = Truo and s cqal t I oherwse
Thus, P(u) =1 Plun) = P(so) = True and P(u) = s therwise Henee,
th caims halds fo the caso when @ = V.
Next suppose that Q@ = 3. By following an analysis smila to the sbore,
Pl el 0
(@0 Pw) o7~ 0710 010 Plw) o7~ 005
o620 P(0)07™ 0037) 0630 Plw) o7

o and s gl o I otherwise.
e and s qul to I otherwise,
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FP Sharp P (Gounting Sotutions)
Sclctd Fac and Theorems
T PP Ch Fibace. (e Chap. )
2 P [
3 TASKT b oo inn compusie st 2 B7
4.1 e o NP-complte s tht with rspect t som polyncgia
Uime witneming reaion for . i 1o #5-<omplee, hen b PP,
(P97
5.1 # POP and FeuP = NP, then cach NP-complete et has some
polynimisiime itnesing rlion with epec o which % t be

P comples FTon
6. PPOFCpAril (e Chap. 4)
7. 4P s lonad under additon and ulipication (e Chap. 5
5. Th Tollowing e equivalent:

& UP PP,

) i coaod under prop subraction
) P iscloood under nger division
@) 4P e closed under every polymomialtme computabl opertion.

(< Chap. 5)
9.1 #P s clomod under proper decrment, then <aNP € SP and NP ©
FRLP. e ho et and Bibloraphic Notes of Chap. )

10, UP'= NP, then #P i closed ser propes deceoment. (300 Chip 5)
11 I 4P i chse under mtegr i b o, then G = SPP (an 30

PHC PP) (seo Chap. 5
12, 1 #P i closed undes minson, then NP = UP and C.P

o 5

5140 s o s i 0.7 - spp. (D

B e G o -
(i i
Pims

P

< p#r - pspacE?
< Find & complxity cla oqualiy that compleely characteize whetber #P
s closed e proper decrement.

Fig. A5 #P—part 1l

snts have #P-complete counting versions, a last under some reducibilitios
‘And Ficher, Homaspaandts, and Torenvlet [FHTO7] have shown that un.
e certain complexity-theoretic assumptions, not all couning versons of
NP-complte sts are <1.7-complte for 4P.

Goldsmith, Oghara, and Rothe [GOROY] ave studied the complexity of
#Py [VAITab], the taly analog of #P.
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case ] = O harcoded ino the advice interpreter (e, whether ¢ € L), We
Eive the advie function, 9, aad the advice nterpreter, A € NP, that prove
L€ NP/linear. Fo each n > 1, o(n) will e %1 if L** = 0 and otherwise
equls 0, whee e is the lngth n tring in L™ such that, by Theorem 39,
each node i the towrmament induced on L°" by (e, the tournament in
“which there s & node for sach member of L™ nd for 0,0 € L™, 8 # b,
direted edge () is in the graph if nd only i 1(a,B) = ) can be reached
rom s, via paths of ength at most two, The advice interprter st A is 48
follows.

A= ((2,00) | there is o path oflength at mest two, in the tourna-
ment induced on L™ by f, from w o 7).
Clearly, s of linear length and 4 € NP. 1 2 € L, then by construction

(@ f(1e)) € A1z ¢ L, then (z. (1) ¢ A, 3 (2. f(D) € A, then we
have a2 € (0,1,2) and & directed pach

P—
from v to 2, L., one saisying

0= Ay = 2 A (410 € € 2 1) [flag a401) = ave].

So, since 1 € L, by the definition of sem-fenibilty we aso have that sach

st be i L. Thus, o, = 2 must b in L. This yields  contradicton. O
Since Peel i closed under complementation, we have the fllowing corol-

ary.

Corollary 3.1 Psel € NP/linear ) coNP/linesr.

In fact, note that Theorem 3.9 ensures tha the guesed paths fom
ill be very short—of ength at mast tw. So our NP interpreter, when re-
saling the question “Is = n L7, in fac need only ks a pa
of ength at mast o, with each element on the path being ielf an n-bit
ring. So since we can deterministically check for paths of ength st most
ot n nondeterministic gues bits i fact suffice. Thu, we crtaily have the
following coralay to the proct.

Corollary (to the proof) 3.12 Each semi-feasible set can be acceted
with lnear advice via an NP machine using lnear nondeterminism.

Though Theorem 310 speaks merely of inear advice, one can say a bit
mare about the amount of advice. In fact, the proof of Theorem 310 shows
that

Pl CNP/n 41,

(s i  shorthand for P-sel © NP/A(n), where h(n) = n-+1, and recall that
this means that the advice string must be of ength czactly h(n). Is this
optimal? We now show that, though  + 1 bits sufic,  bits do o suffce

Theorem 313 P.sel & NP/n
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“This immedintly raises the question of how lkely I that such functions
exis. A o will s i thissecion,  satisying answer can be given to this
‘quetion: Oneway functions xis f nd only f stongly norinvertibe, total,
Commutative, associative, 2ary one-way functions exit.

Before we prove this theorem, wo irs formally define what we mesn for
2.ary functions by each of these propertes.

Definition 2:10  We say a (posibly nontotal) &ary functon J 5 x5+ —
5 i honest

@ polyomial ¥y € range )3, + ' o) A (2.) = )

Note that Definiton 2.10 does not requize that Jz| + 2/ < q(ly) hold
for overy 7 and = for which /(5. /) = ; the defniion merely requires that
cach lement of range() have at least one appropriste pie (z, ).

Definition 2.1 We say o (ossibly nontotl) Z-ary function 1 : 5 x5 —+
s (polynomil-time) investible fthee is a (possibly nontotl) polymomial-
time computabl function g such tha, fo each y € range( )

€ domainis) A
(rst(g(y), second(o(3)) € domain(f) A
frslofw), second(o(s) = v.

where the projction unctions frst(2) and second(z) denote, respctiely, the
et and second components of the unique ordered pair o strings that when
paired gie =

Definiion 2.12 We say a (possibly nontotal) 2ary functon / : 3 x5 —
i onewsy if

1. 1 i polynamialtime computable,
2. 1 i mot polymomiaL.time inoertble, and
3.7 is honest.

Next, wo turn towards defining strong noninvertbility. Informally put,
strong neniaverdibiley means that even given one of the nputs as wel s the
output, the other input cannos in general be computad in polynomial time.
‘Wo capture this formally as Definiton 2.14 below, being careful to avid the
atalog for strongnessof a ength-based “honesty” rick that might ariically
block invrsion via shrinking engths i one srgument 2

T Note hat our defniton doss confe s honesy on functions that widly shrink
hic arguments, bt do 2 1 pralel fo both thte srguments. For cxample,
conseder the foncion ) tha cquals logtoglog{ (il )] when o = 5,
0 that 5 undefined oihervise This obviousy dahoncet foncion i 1 act
Pty
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o Tis st of palrwise disint ntervals over 5% having cardinaliy stiely
sreater than (12

«0Jr] 2 1, then the following condition holds: Let d = [r] and 1 =
(b, .. (i b)] for some s . g € 5 and by, .. by € {0,1).
Thn, for il 1 € F, there exist d pairwise ditnct clementsof {1, .. K},
S 30 ch that for a7, 1< 5 d, QI 3.] = .

Given an fnput (5T, 7) that mests this speification, CULL may call sl
cecursvely inthe caso when r] < £. The somber of recursiv cl hat CULL
makes i les than f cqual 2k~ 7)2a(e) + 1) and th inut t ench
tecurive call s ripleal he form (z, 1, 7) o some T C T and ahypothess
it 7 such that 1] = [ + 1. Thut,the computaton of CULL on nput
(5,7 can be viewod a .t of dep bounded by & |

The hypothess s 7 is ted to ten, or cach ntervl 1 € T, the
Kitruthtable condition /U] 1o a (& = [r)truthable conditon. Wo de-
noe the reinment of /(1] with ropect 10 7 by (1], Supese that 7 =

(b, .. (s, )] or some d > 1,y ey € B e
(0,1). Lot 'bo an acbitrary interval in T and 1t 1] = (01, o).

Then, £:1] = (3,1, . where 8 a0d vy, vy, are defined a5

ollows:

o Fors=1,....d,n that order, ot be the smallest of 7,1 < < k, such
that (@I, < wa) A (¥ 1< <5 - )i £ i)

o For every §,1 € § € k—d, Lt be the i smallest cement n {1, . ¥} —
(o1 pa)

o 8 the boolean functon of arty (k — d) that s constructed from @ by

simltaneously fxing fo al 5, 1< s < d, the argument at positon p, to
b,

We will write 3,/] to denote the truthetable of £,[I] and Q,|/] to denote
the queries of £, 1]. Nota that if the hypothesis it 7 s correct, then for all
TE T 1) e i by S f and oy i £1 i st by .

‘Suppose that |r| = k. Then, for all I € T\, f,[1) is a boolean function of
arity 0, i.e., & boolean constant. Since ro(|z]) = 1, CULL cannot select more
han one istervl from I to generats s ontput. CULL comptes S — (1 ¢
T 7,1] = (Toue). I § s nonempty, CULL slects the lagss lement i
 in lexcographi order; i S s empiy, CULL outputs the empty set. Wo
i that the output of CULL i & refinement of I for 2 under 7. To seo
hy, suppose that T i nice for = and that the hypothei it 7 i corret
Then,fo every interval 1 = ] € T, () il tha of cqua t 4 i
3o[1] = Tru and is strictly groater than 5 otherwise. So, for every interval
T, wtpa(s) # 1 i sithr 5] — Fos or 1 s ot the asget clement in
S i exiographic order. Thus it i sl t 1 slctth lrgest. clomert i §
inloxcopaphic orer

On the other hand, suppos tha |1 < k. Then CULL executes o
hses, Phases 1 a0 2. I Phae 1, CULL climinate ntevals fom T 50 that
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Before we prove Theorem 2.16, we prove the ollowing easy propositon,
rom which i s clea that Theoremn 2.16 can be alternaively interpreted a4
saying that for 2-acy functions, the exisence of ane.way functions stands or
alstogether with the existence of strongly nonvertible, total, commutative,
associtive ane-way functions, and also stands or flls together with P . NP

Proposition 217 The follouing are equivalent.

1. One-way functions exist
2. 2.ary one-way functions exist.
S PANP.

Proof (1) = (3) by Theorem 25.

“To show (2) == (1, et () be a pairng functon with the standard nice
properies(ss the proof of Theorem 2.5), and that in deltionis nondcress-
ing i ach argument when the othe argument is fed. Let  + £+ 5+ — 5+
be any 2-ary ne.way function Then it s ety tosee that I+ —+ 5 defned
by

902) = f(rs(a), second(s))

is o one-way funcion, where fr() denotes the first component.of the
(i) paie mapped to 2 by the piing funcion, and secon(2)denctes the
second component of the (unique) paie mapped to = by the pirng funcion
So (@) = (1)

IR B 2 5 is o onevay function, then A : 5 x ¥ — B deined
by (z.3) = (hz).y) i casly seen to be o 2ary one-way fonction, as is
K,3) = (h(z) M) (i fac, the attr even throws in or free strong
noninvertbiliy). So (1) — (3) a

"Wo now tun t the prootof Theorem 2,16
Proof of Theorem 2.16 It fllos from Propositon 2.17 that one-vay

vy onevay functions aist, and thus oneway fnctions

ongly noninvertble, tota, commutative, ssocative, 2.

ey onevay functions functionsexist. So we need only show that f one-vay

funcions exist then srongly noninvertibe,total, commuttive, asociative,

2ty one-way unctions xist In ok, by Propositon 217 i ufices o show
that if P # NP then there exist. functins.

So, sssume P  NP. Then therewill exist an NPTM V' such that L(V) €
NP~ P. By standard machine manipultion it follovs that there oxists
polynomial p,stisfing (Vn)(n) > n. and an NPTM ¥ suchthat L(N')
L(N) (chus, L(N) € NP — P) and on cach input = exch computation path
of N(z) has exactly i) bits. Wo willvew these paths (the sequences of
Rondetarminitic guesse) as potentia witnesscs for = € L(N). and we will
el such a path a watnes (or = € L(N)) exactly if it is n accopting path
F N(z). o formatse this, we deine W (2) Lo b the st of ll witnesen fox
€ LN). Note that = € L(N) s W(z) 0. and tht each witnes has
engeh polymomialy related to |5, Note aso that, due o the by standard
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et

Complee Langusges
Al he <o v srsghtiorwead canonicl complee anguages that cap-
e the acionsof geneic machine (cn he techniques of [HarTs). The ot
isfabily problem, of propesitional dynamic logic s EXPcomplet. Various
probems from logic (0. whether » gven Schfke Bermays presion b
o) known to be conplte for NEXP (e [Papd, Ghap. 20

Selcted Pcts and Theorsms

E'C NE PSPACE < EXP C NEXP.

EZNP. Bosrz)
EE EXP. NP G NEG NEXP. {1565 CooTy SPNT]
The steong exporentia herrchy collapses, 10, PV =
EU NEU NP U NPV Hems)
NP - NEXP (e Chiap. 6
= NE L and ol if there s o tally sts i NP — P [Boorb HH7
E = NE if and nly i hee ar no spare e n NP - . i)
6 = coNE ol vy pai st n NP o NP 84
AL < complat st for EXP hve e P susets.

E 4 BRPACE. Hocrin
Al [t
A s3]

10 BXEE P/poly, then EXP = DA
(e the Biblographic Noesof Chsp. )

Flg. A8 E, NE, EXP, and NEXP
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Definition 213 We soy a (possibly nonttal) 2ry unction 1 : 5* x5* —
i s honest if

L. (3 potynomial ) (¥y,a: GO
@)W1 < ol
2 (3 polynomial g) (¥, (o).
@' < oyl + 1) A 108 = )

Definition 2.14_ We soy a (posily rontota) Sary funcion J : 5 x* —
5 is strongly (polynomialtime) noninvertbl if it i - honest and yet neither
of the follwing conditons holds.

L. There s o (possibly nontotal polynomiak-ime computable function g
Bk T~ B ch that (W € range(f)(Vauza : (n,m) €
domain({) A f(z1, ) = )[(y21) € domain(s) A /(21,90 1))

2 Thers is a (possiby nontotal) polymomiaktime compuiable function g
BT o T ek that (y € range(f)(Venm ¢ (552) €
domain({) A f(x1,2) = (. 22) € domain(g) A f(g(s,z2), 1)

We define sssocativity and commutativity only for the caseoftotal une-
ions, as Theorem 2.16 uses these notions only for that case. However, we
mention in passing (and the Biblcgraphic Notesdiscuss in more detal) that
1f one tris to apply analogs of thee notions o parcil funtions, one must
be very careful. There aze two different ways one can do thi, and confusing
them has e to seious problems in the iterature.

et

ion 2.15
1 We soy  total, 2ary function £ 5 x 5 — 5° is associative f

A2 = S )

2. We say o total, 2ary function {5 x 5 = E° is commutative f

(o ife) = 2]

For cxample, applyin th noion i the nturalway to funcions that may
{ntrpre hee nput srings s ntegers, the 2.y Fucton “mulipcation (of
integs) s sesociative and commutatve, the a5y function “cncatenation
(ofiings)” s ssocative but not commutative, nd the 2.ary foncion s
eacion (o ntegers)” s nethr assoiative nr commutative

Wi can o stae te i teore of thi section.

Theorem 2.16 One-uay functions exist i and only i strongly nominsert-
il total, commulative, assocatie, &.ary one.vay functions ez





index-295_1.png
A9 UP FoxP,and US 281

(Cook [Coost] proposed to use notation NC* in the honor of Pippenger,
‘who characteized NC* as the anguages accepted by roversal bounded Tur!
ing machines (Pip7a]. Chandra, Stockmeyer, and Vishkin [CSVSH) studied
the nonuniform version of AC. Cook (Coo3s] proposed notation AC* for
the Ianguages accaptad by logspace alernating Turing machines with slcr.
‘nation bound O(log" n). Cook pointed ou (atexibuted to Cook and Ruzzo
in [Coo85) that the class is the same s the unifom version of the class
studied by Chandra, Stockmeyer, and Vishkin. The leter A" in AC thus
stands for “alernating ” Ruzao (Ruzs0] showed that AC* S NC¥* for all
k> 0. Hence, AC = NC. Sutborough [Sud7s) gave a complate character-
iaation of LOGCFL 1s the languages sccepted by nondetarministc auxil
iacy pushdown sutomata in ogspace sn polynomil-time,which character-
aation vields NL € LOGCFL. Ruzzo [Ruzs0] showed that che pushdown
stomata class by Sudborough s included in AC! thereby shoving that
LOGCFL C AC!, Venkatewaran (Vend1) strengthened the upper bound by
showing that LOGCFL - SAC!

Though we havo used logapace-uniformity a the default uniformity type
of NCX, ACK, and SACY, many other types of uniformity are aso important
i the ierature, ranging from P-uniormity down to extremely restrctive
notions of unformity. Regarding the former, seo for example Allnder's pa-
per [AUSSb]. Regarding the latter, we mention that Us.-uniformity, which
s noduced by Ruzzo (Ruzs], sew sl (Cooss]), s an attempt t. captur-
ing what one would mean by “NC'uniformity." and is often used whon study-
ing NC. Uniformity types that ate even more rstrctive have been propasecd
and tudied by Bartingion, Immerman, nd Sraubing BIS90]. Ruzzo (Ruz1]
s compated various logspace-uniformity conditions and shown that NC'
with k2 2 is robust under the choiesof ogspace-uniformity conditions.

A9 UP, FewP, and US: Ambiguity-Bounded
Computation and Unique Computation
machine N such that L = L(N) and, fo all z, N(z)
I st most one acceptng path

v {
senieermiisic polymomilime n..n.}

thers is & nondetarministic polynomial-time 1\...n.}

s
us= (oo O L T NS
e sy ane sceping puth

Above,the (e s 10 dnothcompuainf mchine N an
= i b Sentig v+ horband he oo e
eyt

"Th caues UP and US captur the poves of niqenes (e UP, some
prefer the term unambiguity). Given a boolean formula f a typical US ques-
i v b, s 1 b el om soion” U o et
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3. The Tournament Divide and Conquer
Technique

If computer scence were a county rather than a fild, one can wel imag-
ine tht ts motto would be “Divide and Conquer,” which might have odged
ot “In Palynomial Time We Trust " Indoed, divide and conquer techniques
‘company the computer scietist from th introducion to binary search
through the mastery of cutting-edge algrithmic techniques. However, com-
pute sientists o ot own the franchise. Divide and conquer techniqes are

et rom
tournament theory. Pechaps surprisigly, we will see that his tournament
theory result mmadiatly yields an upper bound on the nonuniform com-
pleity of semi-fesible ses, e, how much advice various classs need o
ccept them (Sect. 3.1). The result—with . bitof vk —slso proves that NP
‘machines camnot. fnd unique satisfing sssignments to satisiable formulas
nles the polynomil Hierarchy collapses (Sect. 33).

Wo also will exactly pinpoiat. the maximum nonuniform complexty of
semifeasiblesets (Sect. 32),

3.1 GEM: The Semi-feasible Sets Have Small Circuits

(Consider a -node graph, haing o setloops, suchthat for each pai, {08},
of distinet odes we have s diected edge from tobor  directed edge rom b
0.0, but not both such edges. Such a structure s known as a k-tournament
(500 Fig. 3.1). One may think of this as  round-obin tournament in which
each node represents a playe, and the edgo betwoen two players s directed
towacds whichever of the two won the match they played (notesace allowed).
Tournaments havo boen extensively studied. However, or our purposes at the
moment, we ne only the fllowing simple clim (Theorem 3.1): In any k-
tournament, there exiss some smal collction of players such that every
player i the tournament defats at east one member of that. smll collection
(e consder each member, by convention, to dfeat him- or hersef)

For a graph G, ot Vo, denote the vertex et of G and let Eg, denote the
edgo ot o G. Lat (a,) denote an edge pointng from a to . In our sports
tournament. analog, we draw between players a and b the edge (0,8) if b
defeats , and (5,0} i a defeats b;tha 15, edges point towards winners.
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Selcted Pctsand Theorems
10 AG SN k20 {Rasso)
Sorting can be done n NC', o, the parity funtin i in NC'. [AKSSS]

The pasity function i not in AC?, and thus, AC° # NC'. Even strongor, no
il of contant deph, supecglymomia Ses unbounded o Crcuis
an compute he paiy fnction (o Cha. 5
For cach £ 2 1, ther i 8 amly of functions 7 = (fo}cy such that
 can b computed by a family of depih , polynomial i unbounded
T clruls bt cansot b computed by s Tty of depth (b 1)

2
b

Eperpotymilaias tbomded v Sreute. o G, 8
5 PLU Gl eNe: [CPs
8 NLCLOGGEL. S
7. LOGCFL s closed undes complement. sl
8. SACh i ot chood under comploment. Honevr, for each £ > 1, SAG is:
s unde complement, Ve, B 50]

Fig. A11 NC, AC, and LOGCFL
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put, the issue is whether f(a) = = should be considered true when = € 5
nd 2 ¢ domain( ). These ssues e discussd in doail by Hemaspaandea
‘and Rothe [HROS), wha in pactculr prove that, due to s subdle confusion
betwoen the two notons, a lim of Rabiand Sherman [RS97,Shese) is nvalid
IfUP £ NP.

Rogarding Sect. 24, Rabi and Sherman (RSU7], soe the discusson
in [HRO9) show that no total, “weakly asociaive;” 2-ay one-way functions
exist, which implic that o total sssoclative, 2.y one-vay fonctions ox.
st Hemaspaandra and Rothe [HRO9] note that lack of one-to-one-ness hlds
per force for any commutative 2-acy fonction having somo disinet clements
in s domain, and they propese a more general notion to study hat they
eall unordored infectvis. Homan [Homdo] provides o deep and direct study
of what uppe and lower bounds hold on the degree of many-to-one-ness of
2.y functions, and of th nteractions between that,algbrale propertie,in-
vertbilty properties, and compleity-theortie hypethises. For cxample, he
proves that f P # UP then thero exists o O{n)-to-one, strongly neninvertble,
total, assocative, 2ary one-wny functon.

Stiman [S6193] has writien a general survey of on-way functons, and
« later survey by Beygelsimer et sl. [BHHRO0] focusos on the study of
Sssociativ, 2-ary one-way functons, These eferences ll study worst-case
cryptocomplexity. References on the rlate but distnct study of average-
case cryptocomplexity and that arew's notlon of one-way functions include
the bocks of Luby [Lub9%) and Goldrich (Gol01|. The reult, mentioned in
his chupter'sntroducton, that th type of one-way function used in average-
case cryprogeaphy exists i nd only i pecudorandom generators xis s e
o Histad, Tmpagliazzo, Levin, and Luby (HILLO9]
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Ambiguity Polynomial Tirme, Uriaue Polynomial Time.
Pover

Catogoricalacceptance. Unambigt polynomial-bounded ambigity uique-

Detnion
or- o[ R R T R R
s on cepin
(o e s
Fp

[her is o nendeterminisic polynomil-me Turing m.}

[ine 'and  poigmomin g such that L = L(N) snd,
o s 2, V() b . st (1) acopting patha

e i  nodeterminisic polynomin e Tring ma-
- o A T

[y one sccepting pah

At Dtion
Py
0P = § 1" L i i ) Pl
2 zeL = |lfy| vl < allz) A Pz, W} -.1
(s . plyomsdimeprse P, polmonil .
o b e s, i £
FowP = { L] 1. 2¢ L == [l{y| Iv| < allzl) A Pz, w)}l| = 0, and
2zel = 1<yl vl < olleh A Pl NI <
us- {L

(el
[thero i polymomiame prodicate P and a polymomial
g sch that, for 2l 5,7 € L 4= 1] bl < a(1) A
(bGes i< 1
Background
P " dtned by Vit V70, US was defined by Blass and Gure:
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cubtly diffsent nature, UP s the clus of problems that have (on some NP
‘machine) uniaue vitnesses. That is, i thee i an NP machine M accepting,
L snd for every nput = the computation M(z) has at most one accepting
path, then we say L € UP. We call NP machines that acocpt on st most one
path T all inpute categorical machines. Valisat started the study of UP and
Catogorical machines [ValT6)

"UP has come to ply  crucial ol in both cryptography and complexity
theory. In cryptogeaphy theory, Grollmann and Selmn (GS55] prove that
one-to-one one-way functions* exist if and only if P # UP, and one-to-one
one-way functions whose zange s in P exis f and only if B # UP ) coUP.
This we suspect that P # UP becase wo suspoct that one-Lo-one one-way
functions exist.

" central question in complexity theory, et asked by Berman and Hast-
manis [BHTT] is “How many NP-complete problems aze thete?” Borman snd
Hartmanis conjoctured that thre s only one NP-complte problem, which
appears in many guise. That s, they conjectured that all NP-complte sets
ate polynomial-time isomorphic (P-isomorphic). Indeed, they shoved that
al then-known and all paddable NP-complete sets azo Pisomorphic ([BHTT]
and Mahaney and Young MY85]). Note thatthe conjoctured P-isomorphism
of NP-complte ets mplis P  NP.

Kurtz, Mahany, and Royer [KMR] have shown that relativ to a ran-
dom oracle there ate NP-complte ses that are not P-isomorphic. Feaner,
Fortnow, and Kurtz [FFK96] have shown that there is an oracle world fn
‘which all NP-complete sets are P-isomorphic

Joseph and Young found NP-complete *creative” ses that ae not ob-
Viously P-isomerphic to SAT. However, If o ene-to-one one-way functions
exit then thee sets ase somorphic to SAT. This e to the fllowing conjec
ture (see [JY35,KLDSS KNRSS KMRSS, Rogd7). Since one-t-one one-way
functions exis if and only if P % UP, this conjecture liks P~ UP to the
structuze of NP,

One-Way Conjocture One-to-ane one-way functions exist if and orly if
non-P-isomorphic NP-complote sets xist

‘This coupling between UP and NP has been weakened. Hartmasis and
Homachandn [HHO1a] show that there s . relaivized world in which the
‘One-vay Conjeture fals That i, ther is a world In which there are no one-
torone ano-way functions yet there aze non-P-isomorphic NP-complote sets.

Ty raneef) we dencte s (). A onction 1 is honest (3 potynomin )
O € ranas)) @)l < §5) A 12) = 1 A onectoone oncvay functin
& toal, sngievalud, one tncne honest, poymomirtime computabl funcion
5 o Ch 7 (which Wil b prta funcen 1 anee() # ) s nk
Computabe i polynomial tme (G385
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3. For any set A ad any clas of funtions %, A/F denotes
wlerenean,
4. Fo any closs C and any class of funtions %, C/F deotes
wlaeeoE enLecs)

Equivalenly, a langusge L i in P/poly if and only if there is a spare’
et § 50 that L € P (this equivalence is due to Meyer, see [BHTY, p. 307]
and [KLS0]).

Intuiively, sets i P/poly are “close” o being in polynomial time. With a
small amoun of advice (e, the dircut description), . pelynomial machine
can recognize these sts, Hovever, the advice may be terribly hard to com-
pute; thus it is o surprisng that P/poly contains sets arbitrarily high in
the Kloene hicrarchy

Some important natural sets that aze ot known to be in P e known to
have smal circuits. For example, th et of primes s not known tobe n P, bt
o sl ircuitsand belongs t the class ZPP (which aelfimplie possession
ofsmal circuit) (Rab6, AdI7S APR3,GK99] More generally, ny se i the
probablistc lass BPP has small cicuts.

Karp and Lipton show it unlikely that ll NP scts have small ciruits:
1 NP has small ciruits (ie., if NP C P for some sparse set 5) then the
polynomial hierarchy collapses to it scond level.In the wake of thei reslt,
& Bty of rlated reearch has extended our knowledge of the implications

of NP C P%, S aparse.” and of *NP C P, S sparse, 5 ¢ NP" (s the sur-
ey (HOWSYou2] or the papers (AHI93KWSS). This lne of research
is discussd in Chap. 1.

AT L, NL, ete.: Logspace Classes

Much of the polynomial-time world (of P, NP, GP, ete) is echoed in the
world of logapace computation. L, nd NL denote the languages acceptable
by Turing machines running in, respecively, deterministic and nondeter
miniti logspace. G is the logspace analog of ©P. The study of logspace
atialogs of modulo classes was niinted by Buntzock et al. ([BDHMS2], soe
Ao (HRV00),

The logspace world provides only  partal analogy to the polynomial-
time worl. For example, NP = coNP i a major open quesion. Nonethelss,
the beautifl logspace analog of this, NL = coNL, i known to had, due to
‘work of Immerman (lnn88] and Stelepcsény (52058

T st 5 i spare if there are st ot plymominly many lrents of kngth st
most S, ., @A)V 2 Dz =€ SAle < )l ')
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A, i commutative. Why? Consider (u,). I iterof the ot two
casen of th dfnition of ok we trvily bave S(u,1) = 1(0,0), and i
e Gt case holds, o lo have f(u0) = J(u,u). ice lexmin el i

7 sa e strongly oninverte 0 ot i to s tht f s honest
Toteesingly, the only nonoviou case regaiing »honsty i svertin the
Sarbage output sting given one of th inputs that mapped to it However,
(it oue having been 20 specic sbout i the witnss of » ting %
o be o length exacly (), even with ciher srgument xed we ca fd
. sting fr the othe et that i of spproprite lngth. So f in
Bonest.Continuin, et us sppae hat /i ot srongy nonimrtbe. Then,
given s whonest, this st be becae 1 can b ovrted with espect
o (st o) ome of i tw srguments given the other agument and the
output. Lt us consde th et case, ., Ut condition 1 f he defnton
of strong somisvertiiity (Defition 2.14) holds. S, there i » polynomial
time function ¢ such that o esch = € E(N) i hlds that {(2,2), (1))
s output » srng of the form (x,0) with w € W(e). ({7 ¢ L(N),
the g(7,5),(z,2) mey otput anything e, bt eing membershiy
n W(e) b ey it cannot posbly ol s ino thinkin that 1 has cueput
S witnes o = € L(N)) Thisgives o polynomiaLtime slorthn (o tsing
membersipin L(N):On npu . compute (7, ), () an sccept exacly
ol (2, (1) i fthe form () forsome s W (). Howeve, e know
tha L(N) ¢'P, 2 our suppostion that condiion 1 of Deition .14 hlds
s i b wron. By the symmetric, aaslogous argument, conditon 2f
Defnition 214 cannot hld. S, / s indeed tongly onimertibe.

1 would be temptng t claim that strong nomevertiviity immedintly
mplcs that the “nonaverbiliy” component of Deaition 212 b atisied
Homever, o subl tessons, hi i 1t 3. (Ideed, i known that s
P NP ther i honet, strongly onimertie fonctions that. re fnvert
ble) Nonethels, the flvor of the preceding argument sbout srong non-
vty tl can b e £ show iRy i the cursent settng;
imply inveting based on the output (7,2) Wil ut into ou hands stings
ot o of whic i  pie having 8 s scond component  witnssfo
ZEL(N), i any such witnssexist.

Furthermor, i Bones. D o the fac that (b vt chic of N) wit
neses at of polynonial legth elaiv t the strings whose merbersip in
L(N) they coty—and that ou paiing function b+ polynomiLtime com-
putable and. polynomiaktime inverble and 0 it cannot ditor lngtha by
o than  paynomial amout, . 6 0 o + ] exch ae bounded by
& olynomial in the other e s £ cse o the defiition of 1 pose n
problem. The only case Chat remains s when o tange clement it speial
string (t,01) However, o singe rang point can neer on ts o precue
hancsy. That s, conside the shorest srng mapping (ot 1) and choose
ut honesy poymomia g enough t streh rom (1) up o th kngth
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Ppoly - Nomuniform Polynomial Time
Pover

Sl cicsits. Table lookup.
Detiaiion

"P/poly denotes {L| (3C & P) (3 polynomial /) L € C//]}, where C/{ denotes
L e ofl st s tha o fom Famtion st ing (o) (A = (0]

it bolds tha L = (x| (= (<) € C).
‘Selected Fcts and Theorems

(oo B1TT)

2 P/poly = (L (3C & P)( polynomial )1 € CF"/]) where C/"/
denotee o'l of il e uch hat 1o some funchon h smfing
(TS bt = e . ) <)

s
i
5
I
7. Pt € P/ (st even Pl € Plaundratic). (e Gy 3
S04 C Pjpls, then PGPty parila,
PO o b analogon inchsions bold_for
NP ) coNP) oy (R0 e i (O35 KE105)
9.1 4 € NP/poly () coNP/poly,then NPVP™™ € KPP 10 .
o, NPT g Nosoe
10, Pjpay # B} (SPARSE). fowss)
Fig. A9 P/Poly

A6 P/Poly: Small Circuits

L i Ppoly f and only if L has small circits, .., there i a iy of
“represenations” (see (Sav72,SchS6b) of boolean cixcits Ci, C. . and an
nteger k such that

(G < 4k, and
ezEL e G accapts z [KLSO

Mre typicaly, and mte generlly,this is formalized as fllows.
Definition A.1 [KLS0]

1. For any set A and any function f, A/ denotes the class of all sets L
such that for some function h stisying (vn) ()] = f(n)] it holds that

L= (] (o) € 4)
2 For any class C and any functon 1, C/ denotes
£l@oeoyLecyn)
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machine maniplation” senence above,  sting can never be & witness for
te own membership.

Tet our paiing function () be ss in the proof of Proposition 2.17.

Let ¢ b any fixed sting such that ¢ ¢ L(N). By €1 we denote ¢ with the
bit 1 sppended

We now define our strongly nomimvertible otal, commatative, asociaive,
2ary oneway fancton, /. Let { be as follows.

(mlexmin(un wz)) i€ w

() A = (03] A {03 €

)
J069 =1 (z2) if (Gu € W(a[{u0} = (2,2 ()]
€ othervise,

‘where lexanin(z, ') denotes the leicographicaly leser of = and <", We men-
ton immediately that dus (o our having required that p(n) > n, in the
{00} = ({2,2), (2,1 case above, there is no chance of z being a witness
tring for 7 ¢ L(N), a0 all witnesse for 7 ae longer than =

Intitively, the ction of the above function i a allows. I has two inputs,
and it expectsthem each o be a pairing o the sume string, , with el of
with a witness for z € L(N). (Note that

(o) |we W)

e P, L, witness testing is ey I the input i ofthe wrong form—tvo
diflerent e, <omponent, o the same it componerts bt ome second
omponent that is meither £ nor 3 membe of (2)-then / outputs  di-
inguished sring that will untion s  garbage duunp. Otherwiso f il .
uce by ane he umber of wiess istaes. Tha s, bt 0 nput are =
pared it clomentsof /() hn  reducs th nier of itness nstanes
om two o one by outputing  paired with the eicopaphically smaler
witnes; it s egal o th second companents to both hld th same witnes,
Which s why w sid witnes instance” abov,racher than “winess” S
Ly i 1 has st one withes ntance among th seond companents o the
(frs-componentmatcing)inpts, then ¢ will edce o et th mmber of
ithes instancs by outputing (%, 2.1 1 has no witness ntances among
it input, € mape o the garbmgedrnp i

e s vy tha 1 i stronly oninvertibe ot commutativ, aso-
iniv, 2 ary on-vay functon.

From it denion, & is clear that Zary foncton f is total and
polymomiaLtme computable

T s wo will s, choceing thelexicographically malle witnes will belp us bisin
e gebrae propertes e sk
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The cas P was deined by GIl(Gi7]a  ogarthmic pace,unlimived-
computaio-ime version of PP. Jun (Jus5] showed tht th polynorial
e verson of P s sdentcal  he unlimited.tma version. Vartous models
o selativised nondetrminiaic/ probabiltic ogspace computatin have been
e in the Herstuee (LLT6SimTT RSSLRSTSA]. A widely used model
s the Ruszo-Simon-Tompa model [RSTS in which the ogspace orace
machines e equired 1o bahave detry
oneated. Alloxder nd Ogihars A0S showed that Jung' el relativizs
e the Ruzao-Smon-Tommpa model. They sl consdered th logspace
Aol of the aounting hirarchy

“The orecle hieraechie of PL and L are known 1o collape 0%,
ABOW). Dorum (D], Toda (Todotal, Valisne (Va12], and Vinay [Vin1]
independendy observed that the dtecminant funcion is omplee for L.
Sinco the dearminant funtion s in NC? (BCPS3), this implicsthat th v
ouslogspace assos arein NG Nisan [Nisd]show that randomized ogapace
R, s contained in SC7, the clas oflanguages accepted by polmomialtme
maehines that e O(og) space. Alender, Bes, and Oghacs (ABOYY),
Sanhn and T [ST98], and Houng and Thiraut 1700 prese algebrac
prblemsthat ae complete o reducibity closres of C.L.

A8 NC, AC, LOGCFL: Circuit Classes

LOGGFL, is the logapace many-one reducibility closure of the context-free
languages

'A boolean circui C, with n inputs i a labeld, dircted acyclic graph
with nodes having in-degres 26 or a lest two. Nodes with in-degres 2er0
are labeld from the set (0,1,71, . F0, s, .- T} a0d all other node
are labeled by either A or ¥ and compute A o v, respectively. A langunge
L' accopted by  family F = (Cula of boalean crcuis i, for overy 7,
€ Lif and only if Gy on = evaluates o 1. A family (Cpl) s logspace.
iform (P-uniform) i there xiss  logasithmic pace-bonded (polynomial
ime-bounded) Toring machine that computes the description of C, given
s

For £ 2 1, NG Pipr) i the cas of Ianguages acceped by logspac-
uniform, O(log" n)-depth, polynomial-size, bounded famvin (all A and V
gates have incdgreo twe) cireut famlon. NC = Uy, NC. o & >
0, AC* [Coo85,CSV84] is the class of languages accopted by logspace
uniform, O(log® )-doth, polymomial-sas, umbounded anin (0 rericion
on the fanin) circui familes. AC = g ACH. Moreover, SACY [BCD'89]
i the clss of languages accpted by logspace-uform, O(log n)depth,
polynomiasze, s umbounded i (o A have n-degres tv3) Chuit.
e
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b sid about upper and lover bounds on the degree of many-to-one-ness
of total, sssociative, 2.7y one-way functions—under various seumptions of
‘uncondiionaly? Sorme prliminary work has been done, but matching uppor
‘and lower bounds have so fr proven shsive,

A major open e regarding one-way fuctions s whether one-way fuc-
tions exis. if the polynomial ierazchy doss not collapse. That is, can one
prove that P = UP > PH collapes? For that mattr, can one prove that
UP= NP — PH collapes?

2.5 Bi

liographic Notes

Section 2.1 covers tworelated notions: one-way functions an ome--one one-
way functions. The ealest cittion we know offor the one-way functions part
of Theorem 2.5 is a paper by Watanabe ([Wat88], see aao [BDGYS,Sel92,
'BFHS Bra7). The one-to-one one-vay functions part of Theorem 25, and
the related definitons,are due o Grollmann and Selman [GS38]. This result
wae lso obtned ndependently by Berman (Ber77] and Ko [Ko85)

OF course, there ace & range of *how many"-to-one-ness evels between,
oneto-on and many-t0-ane, and they similarly and very naturaly have been
shown t0 be characterized by the collapse of complexity classe. For exam-
pl. Allender and Rubinstein [ARSS) show that polynormish-to-one one-way
functions exis if and only if P FewP.

Similacy,the constanto-one cases ars reevant to Sect, 2.2, Tis section
i based on the work of Watanabe (Watss], who in particular established
Theorem 2.7. Definiton 2.8 s duo to Beigel (Beiso] and Fact 2 is stated
expliclyin Homaspoandea and Zimand (RZ93], who study the structure and
potentia collapse of bounded-ambigty classes such as UPs. and coUP.

Rogarding Sect. 2.3, Rabi, Sherman, and Rivest rised the issve of how
algebraic propertis imeracted with 2-ary one-way functions (RSO3RSOT,
e8], se the discusion and lterature painters in those papers), and de.
veloped soret-kny agreement and digital signature protocol that interest-
ingly use such functions as building blocks. Rabi and Sherman proved [RS93,
RS97] that P = NP if and only if commutative, asociative, 2-ary one-way
functions funcions ([RS93,RSOT,Shedt]. exist. However, ther functions are
nontotal and are not srongly noninverible. The main theorem of Sct. 23,
Theorem 2.16, i due to Hemaspaandra and Rothe (HR). Tho counter.
inuitive sesult mentioned in pasing i the proaf of Thectem 2.16—th if
P # NP then thereexist. honest,stongly oniavertible, polynomial-time com-
putable functionsthat ae polynomialime nvertble- s de to Hemaspaan-
dra, Pasanen, and Rothe [HPRO].

“As mentioned on page 38, some tricky issue arise in the study of asso-
cativey of parial funcions. I fat, two disinet notions of asociaivity can
b studied, and they are inpired by ideas dating back to the crly work of
Kloene [KIe52], namely, “complote cquality* versus “weak equalty.” Simply
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LN, et Logapace Classes
Pover

Various types of ogspac-bounded computation
Detiiion

L and NL denot the st accptabe by respactively,deterministic and non-
detarministic ogspace computtion.

euck s £ = () an, for =, the computaion troe
Jof N on input = has at mos one aceping path
there s nondeterministic logspae Turing machine N and }

thre s & nondtemministc lgspace Turing machine w}

- {e
ot o {1 ] ppacecompuiale fncin 7 0t
ol L T b o5 € 13 oy o Boens) =

7t

{ !m-. s probabilstc logspace-bounded Turing .,.a.m.}
P

[ T e s ¢ ot that = € L and oy
PN on nput = sceops > 1/2

Background.
L, wae inteoducod by Gill(GI77. Gl dfine PL se th ca ofall anguages
L for whichthreexists  probabistc logrihmic spoce-bounded machine
it unlimited computation Ume such that, o 4l %, = € L i and only f
T probabity it M o mput = scepts i at st . Jung (k) proves
" doinion in which the machines re roqured o addionsly tua
polynomil e e ive th same s -1 wh it sadied by Allender
S0 Ogihaa [A0BG] UL s it st by Bursrock ot 1. (ILRGH]

Complete Langunges
T wel Known tht PL and C.L have canrical complte angugs. The
language {(G,,1,m) | G i a topalogically orted directed graph Ao,¢ ar0
oo tn G 7 i an ineger . he umber of pathe i & from + 3 ¢ s
¢ lwst ) i logspace mayone complete for PL With “equal 1" n place
f "4 e, this Tamguage becormn logapace many-one complee for Cul.
Sung ) resrts  PLcomplee provem hat s relsed  th evuaion
of polynonials over intger matrice. Allede and Ogihar (1006) show the
prcbln o esting sngulrity of o given neger ateix 5 complete for CLL. 1t
Eunknown wheber UL has o complee languags.

‘Selctad Pcts and Theorems
TN L i sty

2 NL/poly € UL/poly (and 50 NL/poly = UL/pay) (e Chap 4)

3. Th ot of Ianpuages aceepled by probablitie logrpce machint shat

ar e run i paynomial U xaely o P O]

4 (e Chap 0)

H ABOw!

o Rcsc o]

7. All e that ae complet for NI with respect 10 -, (on-way-logpace)

rducions reductionsae plynorak-im momerphic. (Amaogus esuie
ok fo NI and many o clocses) o]

Fig. A10 L, NL, and other logpace cases
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one string and to handle the honesty of the first two cases of the
fon of 1. This islogal and handles ths case, a8 honesty roqures that
g clments have at loast one rlatively short nvers, not that they have

sive. Our goal s to

S0, = 127

Let frst and sccond be 5 i the proof of Proposition 2.17. We say a sring
ais legal if

(@)(Eu)lw e Wa) A a = (2l
I fllows from the defiiton of / that If st least two of 2, #, and =" are
not logal then £(/(z,), ) = (3 (")) = (&1). (Recal tha by the
choice, on page 40, of 1, and by the deiiton f £, (6,(1) will fanction
here as an “absorbing” element.) Similady, /(5. ), ) = /(. )
(6.11) unloss ist(z) = first(2) = frst(+"). And if frst(z)
first(2") and exactly one 5, 2, and 2 is not legol, then we
U7, #),2) = Fle, (2, 29) = 611) wnles the one that i not legal s the
Sring (frst(2),frs(2).

The only remaining case is that irst() = firs(+) = first(+"), and ei-
ther o of three of %, ¥, and 2 have second components belonging o
W(firs(2)), and in the case tha exacly two of 2, %, and 2" have second
components belonging to W (frt(=) it lso hlds that the remaining string
is (first(z), frst (=)

I frat(2) = frst(#) = ist(+") and exactly two of 2, ¥, and =" have.
second. components belonging to W(irst(2) and the remaining ring is
Ufrst(). irs(2)). then spplying the defiition of 1 we have

OG0, = J(a 6 0) = (rst(a) frst(a).

Hfirs(2) = firs (') = firs() and exacly three of 3, ', and " have scond
components belonging to W (frt(=), then applying the defiiton of / we

e that
S, 2) = S (7,2 = st
whero gistheexicogtaphically least of seeond(), second(<), o second (s"),
Thus, /s asocintive.
So, wo have shown that £ is a strongly noninvertbl, total, commutative,
associative, Zary one-way functon. al

2.4 OPEN ISSUE: Low-Ambiguity, Commutative,
Associative One-Way Functions?

W idealy would ks our one-way functions (o be one-to-one or, if that
canmot be achioved, 1o have as fow proimages a possible. Exactly what can
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lapse (Chap. ). An exponential analog of the polynomial hisrarchy col-
apes (Homs9]

A42 Polynomial Space
To me every howr of the light and dark i o miracle,

Bvery cubic inch ofspace is a mirace
“Walk Whitman, Mirac

PSPACE i the class of Languages acepted by polynomiak-space Turing ma-
chines, PSPACE emmbodiesthe powr of polynomialy bounded quantiers. A
‘quantifid boolean formula s an expression of the form

@)V @) ([, 7275, ]

whete { is a quantifir-fre boclean formula and the 7 ae boolean vari-
ables. QB the se of true quantified boolean formulas, is & well-known
PSPACE complete problem, and shows how PSPACE embodiesthe power of
lternating quantifiers [to76]

There are many PSPACE-complete problems. Adversary (game) prob-
lems e often PSPACE-compiet. Fo exampie, the gencraliaed vrsions of
GO [L550] and Othelo IK94] ate PSPACE-complte. I  fixed forml sy
tem, whether a theorem has a polynomial “proot presentation”—basicaly,
‘whether givn a eraser and a polynomiakszed blackbosre one can convince
an uncreative, deterministc actorofth truth of the theorem—can b deter
‘mined in PSPACE [HY54]

A5 E, NE, EXP, and NEXP

E = U, DTIMER- and NE = U, NTIMER) ate exponentiah-time
analogs f P and NP. The tructure o (s exponental-tme classes s inked
0 the sructure of polynomil-time cluses. In partcular, the complesity of
ally? and spaseset within NP is id t th tructue of £ and NE [Boo7db,
HH74 VS HISSS CGH® 88 CGH' 0]

EXP = U, DTIME[2"") and NEXP = U,,, NTIME[Z"] ae lternate
exponentiktime analoga o P and NP. They a7 partcuarly usefl in cas
ifying the complexity of logiea For cxample, the saifabilty problem of
propositonal dynamic logic s EXP-complte [Pra7 FLTD, a are the sat-
ity problems of various atrbute-vaue descipton formalims (BS%3]
and various branching time logics [EHBS). Various ogi problems are also
Kewn thaare complete for NEXP (s [PapO4, Chap. 20). NEXP s also
proven centrl n understanding the complexity of iteraciv proof systema
{ise Chap.0)

Tty st TG 1 = 1,010,
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Fact 112

L AT U - UT T, T ar refements of Ty, Ty for
= under', respctvely, hen . UTy is  refnement o A for =
nder,

. 1/8 i & rfinement of T for z under 7 and & is o efiement of © for
2 under 7, then © i a refinement of T for £ under 7.

To generate candidates or weus(z), starting with the intal value
A= (0D, e,

we zepet the following twophase process (/2] tmes

« Splitting_Split each inteval in A ito upper and lower halves.

< Clling 1 [A] < r{z]), skip this phase. 1 [AI] > r(jz) + 1, do the fol-
loving: St 7 to the empty lst. Cal a sobroutine CULL on lput (z, A7)
to obtain T G A that has cardinality les than or equal o r(jz]) and s
nice for 2. Replace A with T.

When the the two-phase rocess has beenexecuted p()times,each interval
n A has size exacty 1, L., i of the form [u,4] for some 4 € SKI"). The
output of the enumeration procedure i the list o ll strings € D0 such
that u0] € A

Note that f A s nic or  a¢the beginning of the spliting phase then it
nic for  at theend of th slittng phase. Since both pand  are polynomials
6 CULL runs in pelynomial time, the entire generation procedure runs in
polynomial time. Since CULL is uarasteed to output a efinement, iz € L
then there i alvays one interval in A that contang (7). S0 f 2 € L,
e (2) I included i the st of candidates t the end. So, we have only to
show that  polynomialtime procedure CULL exists tht, on input (z,A,7)
itk A2 P 1 s T - oving crdalty s mos (] ich

refinement of A for  under 7.

o e sk oty b e i dschmion, = € 5 be B
Since only apliting and elimination az the operations executed to modify
Intervals, we can seume that the fnerval in A aee paewise diflnt during
the entire onumeration procedure. So, for svery par of distine intervals,
1 a0d J, appeating in the input to CULL, we wil assume that they a
iscin, s thus, either 1 < J o 1 > J. Wo alao induce a mapping from the
ot of il Intorval over B to the set of all -truthtable conditions. Let
1= [u,0] be an terval over S0, The image of 1 induced by J, denated
By 107G e ] = ) Fo e 15454, QUL

1124 The Structure of tho Culling Method. Each input (z,1,7) to
‘GULL i supposed to satsfy the fllowing conditons:

o 7 1s o hypothesis st and it Jngth, 7], I essthan or equal to k.
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almost sl pais of levels of the pelynomial hierarchy that if the lvels are
equal then the polynomial herarchy collapse. This result dates back to the
seminal work of Moyer nd Stockmeyer, who defined the polynomial hierar-
chy [MST2,5t076). The fascinating excepion s whether 6 = A7 implics that
the polynomial Hieesrchy collapace. Despite intene tuds, this s remains
open—see the discusion in [Hem04 HRZ95|

‘Nonothelos, it is fa from cloas that the view that upward translation
of cqualit is  “normal” behavir of complexity classes i a el » correct:
view. It doos tend to hold within the polymomial herarchy, which i whero
the tuition of most complexity therists has beon forged, but the polyno-
mial hierarchy has many peculia properties that even ts close cousing Iack
(emming from such feature s the fct that the se of sl plyomial hap-
pens o be closed under compositon—in contrast to the et o logarithmic
functions or the st of exponental functions), and ths i fr from an idesl
basis fr predictions. In fact, Hartmanis, Immerman, and Sewelson HISSS)]
and Ipaglinzzo snd Tardos [IT80] have shown that thers is an orace rel-
ative o which upmward translation of equaliy fails in an exponential-ime
‘analg of the palynomial hiearchy, ond Hemaspaandra and Jha ((HI05a],
e also [BGO]) have shown the same or the limited-nondeterminism hier.
archy of NP—the so-called  hiearchy of Kintla and Fischer [KFS0) and
Disz and Torén [DT40)

Propositon 1.24 is due to Allender et al. [AHOW92], Though Open
Question 123, with its P = NP conjectured conchusion from the assump-
Gon of there being sparse <, hard sets for NP, indocd remains open,
some consequences-thovgh not 4 strong ss P = NP-—aze known to fo.
low from the existonce of sparse <%, -hard sets for NP. In particular, Cal,
Naik, and Sivakumar have shown that i NP has sparse <

then there s & polynomaltime se. 4 such that every unsatisfi
formula belongs to A and every boolesn formula that has exactly one satis
fying assignment belongs o A (impliit in (CNS05] as noted by van Melke-
beck [¥M07] and Sivakum [SIv00). That i, A corrctly solves SAT on all
inputa having st most one solution, but might not accep some satisiable
formulas having more than one.
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also [AII91AWS)). Even the Hastmanis-lmmerman-Sewelson Encoding has
ts limitations. Though i docs prove that E = NE If and only if NP ~ P
s sparse sets, it doss not seem to uffice if we shift our atention from NP
(and ts exponentiol anlog, NE) to UP, FewP, G, ZPP. RP, and BPP (and
hir respativoexponential analogs).In fact,the Bubitman-Hemaspaandro-
Longoré Encoding (BHLIS], a different, later encoding encoding based on
some slegant combinatoric [EFFS2,EFFS5,NWOA), ha been used by Rao,
Rothe, and Watanabe [RRWS4] o show that the G and “FewP" analogs of
Theorem 1.18 do hold. That s, they for example prove that E equals, ‘9E,"
the exponenta-time snalog of G, if and only If GP P contain sparse
sta In conrast. with this, Hartmani, Inmertan, and Sewelson showed
Ghat thee are orale relative to which the coNP analog of Theorem 115
s, Hemaspaandra and Jua [H195a] howed that there e oracles rlative
0 which thethe ZPP, R, and BPP anlogsof Thorem 1.1 ul, and they also
showed that even for the NP case the “mimunity” analog of Theorem 118
Tl Allnder and Wilon [A191,AW00] hav shown that one claimed ‘-
persparse” analog of Theoren 1,18 fail, but that n ac cerain analogs can
e obtined. For some dases, o example UP, it remains an apen quston
‘whether an analog of Theorem 115 ca be obtained

"The proof of Lemma 121 povessomathing a i tronge than what the
emma telf aserts. In paticula, the proof makes t clear that: I & = NE
then every sparse NP set.Is Pprintable (e, ther is an alorithm that on
input 1% printa alt ength  srings n th given spase NP set). Thi tronger
i isdue to Hartmanis and Yesha [HY4).

Regarding dovmward translatons of equality relting exponential-time
cascs o smallr clsses, we mention tha a truly striking el of Babil,
Fortnow, Nisan, and Wigderson (BENWS| shows: I certan exporetial.
time anlog of the polynomialNirachy collaee t E, then P~ BPP. This
o ot qite & *downward" transation of equalty, as 1 s not lar i gen
cra whether BPP C E (though that does hold under the hypothessof their
heotem, due 1o the concusion of thie thorem), but this result nonethe.
less represents & remarkableconnection beoween exponentil time casses and
polymomialtime casses

AS = T conclusion, and thus & downward transation of squal-
ity for classe in the NP query bierarchy, wa reached by Homaspaands
Hemaspasnrs, and Hompel [HIHOO0) or the case £ > 2. Buhrman and
Fortnow [BFO9] extended thei reslt o the k — 2 case These appear a5
Theorem 1.22. Downward transltion of squalty are known ot jut o the
1-va-2 query cae but alo fo the J-va-(-+1) query case (HHHO9 HEHOBH,
se lso [HHHOB), bt they vl equality transations wihin the bounded:
Acese -5, beraehies, ather than equalty ranelations to 5 = I

I contrast with the dfficulty of prving downward translatonsof squal-
ity upvard tranlatons of equality ae 50 rouine that they are considered
by most people o be “normal behvior” For example it is wellknown for
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I, PSPAGE, P NP, coNp, P, NP
and Polynomial Space

Pover
termating polynomialy bounded existentil and univesl quanifers

Deniton

The Potynominl Hierarchy

g - e
fo = R0, $20.
20

=

PSPACE = DSPACER)

Atenats Defiiton

i B there i  polynomia g and & plynoriahtm prodicate R such
ha,Tor 1 ol tht

zel e (G il < o) on: unl < ale))
(@ ] S a=]) Rl e, -,
where Qi 3 odd and ¥ i i even.
Background.
“The polynomial Kerarchy was defnd by Meyer snd Stockmeyer [MST2 076
Rescaschors It inroducd refined, mermediae e, mrml: he G vl
(o (P25 Wag).

Fig. A5 The polynomial irachy and PSPACE—part |

the arithmetical hieraechy) rom tecursive funcion theory [Rog67]. The dofi
itionsof the polynominl Hearchy appestin g, A5 n particor, T
;= NP, I = coNP, 0F = (NP), A7 = PP, and 55 -
Tho el of the polynomisl erarchy have natuel dsciptions i terms
otk o Turing mochines and ogicl formulas. Just s the Kloene hierarchy's
Lovels aze characteriged by quantifer slernation, s also are the lovels of
the polynomial hierazchy charactrized by lternting polynomsialy bounded
quantiiers [S0078, Wea7e]. Fo example,

NP = {L| (3k) (3 polynomial-time predicate P)
o€ o= Gu:lul < ol P9}, and
0 = (1] 34 3 polynomikim praicse P)
£€L o= O3l < of) @2 1o < =) Ple 2]
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2.2 Unambiguous One-Way Functions Exist If and Only
1f Bounded-Ambiguity One-Way Functions Exist

In the G secion, we saw that the existence of one-to-one one-way unctions
s characterzed by P 4 UP, but the existence of one-vay funetions is char-
acterized by the les demanding condition P # NP. Though P # UP implies
P NP, the converse hus never boen established. That i it i a least pla.
sible that one way functions exist but that no one-to-one one-way functions

In contras, we will now prove that for a certan narrower gap in allowed.
amount of many-to-one-ness, the existénce of one-way function at the two
level of many-to-one-ness stands o fuls togecher. In paricular, we prove
that one-to-one one-vay functons exis. if and only if constant-to-one one-
way functions functions exiss.

Defintion 2.6 1. For each k > 1, te say that o (possibly nontota) func-
on 1 45 k-to-ome if (¥ € range(1))[{z| 1(2) = 3} < AL

2. We iay that a (possibly nontota) funtion 1 is of bounded-ambiguiy if
there is a k2 1 such that | is -to-one.

Not that “-t-one” s synonymous with “oneto-one” (Defiiton 2.4),
and s we will e the ers nerchangeaby Not tht such funcions / are.
completely unarbiguous i tem of mverson; cach sement of ange( ) has
cxncly one ivere T the ertune, bounded amblguiy onctios re often
el o 3 “consant-orone” or “O(1o-one” funcions.

Theorem 2.7 Unambiguous (i., one-to-one) one-vay functions erit if
nd only ifbounded-ambiguity one-vay functions erist

Proof_All one-to-one funcions are bounded-ambiguity functions, 50 the
only if direction holds

We will prove the f* direction somewhat indirctly. Recall chat part 2
of Theorem 2.5 shows tha ne-to-one aneway functions xis f and only if
P # UP. By an exactly analogous proof, we have Fact 2.0

Definition 2.8 4 language L s in UPsy, k 2 1, f there is an NPTM N
such that

L (V2 € L)[N(z) has t least ne and at mast k acceptng pathd, and
2. (v € T)IN(z) has no accepting paths,

Pact 2.0 For cach k 2 2, k-to-one one-vay functons ezist if and only if
P#UPa

Our attack on the " direction of Theotem 2.7 will be to prove by in-
ducton that, for all k€ {1,2,3,..),

PouP —

P
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@ et

For example, NP7 = U e NPA = NPSAT. We may think of CP s the
claas of Ingtages recopied by C machine iven fre acees o the power of
some member of D.

“Though the e is controversal, many have argued tht aracles are &
sl tool in understanding poeibites for complexity clases (e, €.,
‘Alender's nd Fornow's cloguent discussions (A190,Ford4). Cetainly, f we
Show that some complesity reult T hlda in o relaiviged workd (that
ith some oracle B), we know that relatviable proof techiques cannot
disprove T. This is bocause  reltivisaie disproof of T would disprove T
i all reltivized workd, but we know that T i rue in the world reltivized
by B.

Many crucia resls i compleity theory can b relativiaed i, confiting
ways. For exampl, thre ae oracles A and 5 30 that PA = NPA yet PP 7
NP# (BGSTS], Sitce most known mathemmatcal prof techniques seem to
elativiae, such techniques canot reslve such central qestions s P = NF.
Honever, starting around 1990 (but see Hartmanis et ol [HOG92] for &
discusion suggesting that nonrelaivizable techiques ave » much longer
sty than iscommonly reaied),the eld has withessd the emergence of
some qite nonrivial nenrelaivasble proot techniques (o example, those
of[LFKN92:5ha92). Chap. s devote tothe discunson of  key echnique of
i sor. The breadih of the applicabityof thes techiqes to complexiy-
theoreic isies is an scive reserch topic (Hars5, AL HCRROD HOC* 02,
Fordd)

“Though oraces existto certiy many unlikely situntions—e ., there isan
oracle A for which PA = NPA = PSPACEA, we shoud not think of racies
e tellng s what s the cas i the workd of computaion. Rather,we should
inkof oacle s uggesting th initations o eltivizabe roof technie.

A4 The Polynomial Hierarchy and Polynomial Space:
The Power of Quantifiers

AL The Polynomial Hierarchy

A deck o cards was bl ik the puret o hiarchies, with every
cand o master to those below it and a lackey to thse above .
—Ely Culbertson, Total Pesce

The palynomial bierarchy was defned by Meyer snd Stockmeyer [MST2,
5t76] s a time-bounded analogue of the Kleene hierarchy (alo known as
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1 the answer i no, the = is ot in the rang of /. If the answer is yes, we
check whether /(c) = = and if 5o we have found & preimage under 1 of *
o desired, and otherwise we ask sach of the questions (2,0) € L7 and
H(s,1) € L7 At leas one mst receive the answer yea. We now proceed a8
above o check whether that ane i theinverse. 13 we are dore, and If ot
e expand one bit further (f both eceiv the answer yes, we choose either
one, but ot both, to expand further) and continue smilary. Fo strngs +
that are in the range of /, we will find a cetificate in polynomial time, a5
with each pai of quetions we get one additonal bit of a certifcae, and the
cortificates are of length at most p{|]). We conclude that L € NP~ P. Thus
we have shown the “only if” direcion of part 1

The proof of pare 2 i almast the same s the sbove, except we require
unambiguity of the NP machines and we add unambiguity to the inverses
ofthe functons. To make this work requites some minar proof tweakin; for
‘completeness, we include a proof of the changed part. However, we urge the
reader 0 s the proof notJust by reading ¢ below but rather by fist him-or
herself hecking that the previous proof with minor modificaton does cover
this case.

We prove part 2's “f” directon. Assume that P # UP. Let 4 be a an
uage in UP — P. So, it crtainly holds that thre will exist an NPTM N
such that A = L(V) and such that on cach input 7, N(2) has at most one
accepting computation path. Let p be a polynoial bounding the runtime
of N. Consider the functon i{(z,u)) that outputs 0z if s an sccepting
path of N(z) and that outpits 1(z,u) otherwise. This function is clerly
polynomialtme computable and harest. Sincs N has at most one accepting
path per input, and since we have modified £ to now send the nonaccept-
ing withesses o distinct locations, / i a one-o-one function. However, if
1 were polynomial-time invertibl then by the same algorithm given in the
ease of part 1, we would conclude that A € P, yieding & contradicton. So,
115  polymomial-time computable, horest, one-o-one function that s not
polynomialtime invertible. That i, t is & one-to-one one-way function.

We now turn to the “only i" direction of part 2. Assume that one-to-
one one-way functions exist an that f i such a functon. The language L
constructed n the proof of part 1 will i fct be in UP due to /' oneto-one
ness, and the ret of the “only i dirction of part 1 holds without change,
thus completing our proot. a

Th proof of Theorem 25 is  model of the one-way function technique,
ey, proving results via the connection betueen certiicates or machine
aceeptance and the invertibilty of funcions. We wil draw on this approach
both in Sect. 22, in the form of Fact 29, and in Sect. 23, where the main
proof i also an example of the one-way function technique
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This clealy holds for k = 1, a5 UP = UPs

Assume, inductively, that we have proven P = UP > P = UPcy:
We'will now show that P = UP = P = UPgu. So, asoume P = UP.
Lt I be an arbitrary mermbes of UPuy1 Let N be an NPTM—having at
most K+ 1 acceping paths on each input—chat accepts L (n the sense of
Defnition 2.). Consder the et

B

(| V(o) s ety K+ 1 sccptin path).

Clealy, B € UP, via the machine that on each input = guesses cach loxi-
cographically ordered (K'+ 1)-tple of distinct computation paths and that
ccepts an such o path exactly if each of the K + 1 guessed paths is an
Sccapting path on input . S0 by our P = UP assumption, B ¢ P.

Homever, since B € P, the set

D=(zlz¢ BAze LM}

s UP. Namely, we firt dterministically check —using some P algorthin
for B, and we just. aegued that B € P 50 some such algorthm exists under
e curtent seumptions—whether s fn B. 1 2 € B we tejct, and if
¢ B we divectly simulate N(z). This lattersimulation wil have at most K*
ccepting paths, s 7 ¢ B precludes there being exactly &'+ 1 pathe, and N's
Choice prechudes there being more than &' + 1 paths. Since D € UPey., we
conclude from our inductve hypotheis (which was P = UP == P = UPu.),
and our assumption that P = UP, that D € P. Since P is closed under
union, BU D ¢ P. However, L = B D, and since L was an acitras
member of UP.u41, we hava now established our inductive step, namely,
that P=UP = P= UPcuys

It romains an open rescarch s Whether Theorem 2.7 can be extended.
0 a nonconstant level of many-to-one-nes. Cerainly, the proof technique
sed bove docs not seem valuable beyond the constan-Lo-one case

2.3 Strong, Total, Commutative, Associative One-Way

Functions Exist If and Only If One-Way Functions Exist

Inthis chapter,we have until now focused on the theory of one-argument one-
‘way functions. The present sctio studiestwo-segument (hencefoth denoted
2ary) one-way fonctions. Such functons aise aturally n the stady of cryp-
tographic protocols. n fact, ther tudy and the mest iteresting now isucs
they pose weredisectly motivated by proposed cryplographic protocol.

Tn paeticular, Rab, Rivest, and Sherman have proposed ineresting pro-
tocols for digtal signatures and multparty secret-Key agoeement that vied a5
building blocks (hypothetical) -ary one-way funcions having also such prop-
ertiesas belog tokal, commutative, asociaive, and “strongly noninvertible.”
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I, PSPAGE, P_ NP, coNP, P, NP7,
and Polynomial Space
Complete Langunges
Canonicl sompete langusges exist o cach el of the Wieahy (W7,
S0 th sk of 1se78) s fo PSPACE [S076]

NP has many well kown natural complet problems (se (GI79). PSPACE
o has many natursl complete problems. Fux' cxample, Fraemkel et
TR 78] showed tht genersioed checkrs s PSPACE <omplee, s Tt
S0 Kasn [KO4]showe s genersiond Ohello s PSPACE complte.

1 aao has some interesting, natral complet probles. Somo date s fax
ek the 1070, when the carly work af Meyer and Stoemeye showed
Rt Inoger Expresion neuivlence s T comple. Othr T4 compleences
e include Tloynis [Hussd) vork on nequvalonco of ceiain ypes of
Context e eammas, Schale' [SGHOTH] work on Ratmey-type probioms;
nd s [Umabs] work on boolsn ormin minmistion problens T
s nturalcomplto problems, for example, Schafe's Sch9 Sch0] work o
o VC dimension. Schasto has writte o nics compendiam o atuelcomplte
probloms for £, 1, 5, T, . [Sh01e).

Papadinitios [Papi] showed that natral poblems aro complee for 8%,
inchuding s Opimal Traveing Saisperan, Hemaspaandra, Hemaspaan.
i, and Rhe (RHRO1] showod that s ©3-complte. 1o chck whe. the
Wi n th lction fystem devloped n 197 by Lews Carrl

Problems aking when gready algorithen perform wel e sso know e
Compiet [HRGS] Wagnee WagT| provided & valuable Famoverk (o provis
O compltencs st

T The Polymormial Hiorarchy

Fi. A.6 The plynomial hicearchy and PSPACE—part 1

This characterisation by alteenating quantifors s handy. When asked the
complexity of MINIMAL-FORMULAS ~ (F| F is  boolean formula
“d no equivalent boslean formula i shorter than F), we can refict for
 moment on the underlying quantifer stricture snd quickly note that
'MINIMAL FORMULAS € T, That i, MINIMAL FORMULAS i the s of
all F such that or evey shorte formula F thre xists » variable ssigament
o which F and F difer

The work of Chandsa, Kozen, and Stockmeyer (CKS81] develops machincs
that accept the Ianguaes at each lvel of th polynomial hieracchy. Known
s altarnating Turing machincs, the acton of these machines alternates be-
e exatental n univeesal blocks, and mireors the underlying quantfer
stcture of theclsaes,

We soy that the polymorial Wiersechy collapses I, for some , 5 = T,
(vhus 5 = PH). A crucial open question s, doos the polysormia hierarchy
collapae? That s, in some fxed mumber of quantifios poverful enovgh to
simulte al fixed areangements of quantifiers? Oracles are kaown for which
the hierarchy collapses (BGSTS] and for which the ierarchy does not col.
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NP~ Nowdeterminietic Polynomial Time
Pover

Gucming. Nendeterminim
Denition

NP = U NTIME
Aerate Defntion

N langusge I i in NP ifthee xists & polymomial g and & polynomitme
prodicate  uch tht, foreach .

€L o= (32l < o) R(e L

Background
T the arly 19705, Cook (Coo7] and Levin [Levrs,flloed by . ey paper
by Ky (Ko7, nitioed the stody of NP and s complete prabiem. Msny
NP.complete pribies are now known, and the sty of NP ructare & &
nifying theme of complety heory,

Complet Problens
R s e of <1,
s G179,

The mt studied NP-complet problm s satisfibilty SAT = (| boglesn
oty F 1 satiafble) vas shown o be Toring-complte or NP by Cook.
Karp showed that SAT and many ther prcblos o £, <ommplee or NP.

complete (polymosialtims many-ns compets) prob-

There are o problems that are known to b in NP, et have boen nether
proven 1 b NP complte or provn 1o b n P. Exainpes of suh roblens
aregrph somorphiem (... (G, H)| G and H aresomorphic)) snd primaly

Fig. A2 NP—part |

have . proof (of reasonable size)?” Thus NP embodics the power of guess-
ing, ot crenting, mathematical proots. P embodies the mechanical process
of erifying whether  proo is cortect. Asking whether P # NP is ancther
way of asking whether the creative proces in mathematis rises above the
compleity of mere mechanical vrification. Since men ate likely to create
mathematical prof stuctures only of small ize, sking whether P = NP is
one way of ssking whether machines cun usurp man's ole n mathematical
discovery. Breakthroughs during the 1990s n the theory of probablltcally
heckable proofs have gven alternativ new insghts int the powes of NP and
the nonapproximabsity of NP optimization problems (s, or sxample, the
treatments in [Aro%4 5ud92,ACG* 99]). NPNP i the most. extenivey stuc
ied computational complexity closs, and many insights Into NP's structute
Bave been found during the past decade. Nonetheless, our understanding of
NP s ragmented,incomplte, snd onsatisfing,
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No proven one-way functions are known. Not even one. Norethelss, one-way
functions play a central role in complexiy theory and cryptography. Incom-
plesity theory, one-way functions have been use in the (1 date unsoccessful)
attompts to show that ther exist two NP-complete sets that are not eson-
ally the same st in disguise (1., that az not palynomialtime fsomorphic)
In average-case and wors-case cryptography, one-way functions have been
s s kay components in the contruction o cryptographic protocols.

Fortunately, the comment made above sbout not even one one-way furc-
on being known i, though tru, bt deceptie. Good candidates fr being
one-vay functons are known. In fact, complete characerizations now exist
rogaring the xistence of one-way functions. In paticular, . is now knovwn
that the type of one-way function used in average.case cryptography exiss
and only i peeudorandom generators exist. It s lso known that the type of
‘one-vay function used in both computationa complexity theory and worst-
case cryptography exists f and only if two well known complexity casses
difer

This chapter's GEH sacton proves th Iatter result. Wo will see i that
secton that one way in which one-vay functions ae classfiedis i terms of
ther level of many-to-one-ness-what types ofcollson ar allowed. Sect. 2.2
proves the rather remariable esult that one-to-one one-way functons exist
if nd only if constant-t-one one-vay functions exist. Though this docs not
say that owcollisionntensity one-way-function casssal colapse to mutual
equaliy, it does say that ther existence stands or als together. Section 2.3
looks at two-argument one-vay functions and in pasicula at th extromely
powerful (sssociativ, commatative, total, and strongly noninvertbl) types
of ne-way functions that have been supposed-to-exist and used as hypotht-
feal building block fo protocols in worst-case cryptography. We prove that
they ae Just o kel to exist as are standard one-vay functions. So, one
might as wellfel froe to use these “ller” building blocks,as thei exstence
stands or falls together with the existence of standasd builing blocks.
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Nonetheless, thee s widely held feling that fndamental natural prob-
lems belonging to P wil have polynoia-time alorithms o low degree. The
ildof design and analyssofagorithms attempt to rove tht key problems
arein P, and then to show that they hav algorithens oflow time complexity
(ther exist many books on the analyssoflgorithms, .5, AHU?4,CLRSO1,
Koa2)

A2 NP: Nondeterminism

Tuo roads divergd in a yllow wood,
And: sory I could not trovel both
And b one traveler..

—Robert Fros, The Road Not Takenn

NP = UNTIME[R

= {L| Ls sccepted by » polynomial-time nondeterministic
Turing machine).

P contains the problems w can solve, NP symbalizes the problems man
needs to sove to effcintly structure and optimize his world. The P-NP
question asks whether the omputers bl by man's ingenly have the power
o solve the problems formed by nature's complexity.

NP is the class of langusges sccepted by nondeterminitic polynomial-
time Turing machines [HUTS). Intutivel, » nondetermiistic machine i one
that is allowed to make guesses dring its computation, and always guesses
corcectly. Equivalently,  langusge L isin NP f thre exiss  polynomishime
computabl relation R(.) and a polynomial g sch that

(=1 Gy Il < o) [Rez 1))

In the early 19705, the wrk of Cock and Karp [CooT1 Kar72) showed
that NP has natural complete, or “hardest” unguages—languages to which
every other NP problem can be polynomiabtime many-one reduced. These
problems stand or al ogether: I one NP-commplete problem i n P then all
NP-complete problems atein P. Durin the past quarter century,hundreds of
problems from al reas of mathematics, computer sience, and operationsre-
Seszch have been shown NP-complate, f P=NP then these and many cucial
optimization problems can be solved i polynomil time. And, ust s mpor-
tantly, i P # NP then no NP-complets probls can be slvd In polynomial

However,the mplicstionsof P = NP are even more profound. An NP ma-
chine can answer the question, i » fixed formal system, “Docs this theorem
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NP~ Nondeterminatic Polynomial Time
Sekcted Pcts and Theorers (Continued)

5.

5.
i3

s
.

2

(EAPY = NP, GB)PP £ NPI. ndood,with pobabiity one rela-
e 1o random oracl, P and NP difer [BoSTSRGS!
A paddable NP-complte sts are prisomorphic o SAT. _[BHTT.MYSS|
Wil probabity ane rlaive  a Fandom race, theee are NP-complete
st thag aae ot Pisomarphic Kaihas]
There s riaivzed wori in which ull NP-complte sets are P

FFkoe)

somorphic
TP < NP and i sparse then
P¥ = NP s (OIS € K logn, )l

where K. rpresnts time-bounded Kolmogorov complexity. [HHSSb)
't graph omorphiem probam i NP complte, the he polynomial
sy calapoce G380,5iZ87,GhoWol S
65 NP 1 NP then thre i st 550 (1 S € P and § € SAT,
. (2) no P machinecan i soutions fo il formulas i S—hat i, for
Sny plynomial-ime omputable uncio 3, there wil b & forula. € &
ok o1 is ot ity asgmmcn o 1 g
For ach £ 0, Ry (NP) = R, (NP). [Beiota
NP (7 coNP has <Fcomplet et o and only if NP () NP has <5
compiee ses. (Gursd 5]
SKT & tratvely enumerable, L., thre is a bonest, plynormialtime
o ] i 0 o KT = (e S
NCQP) Got35,Ogia)

o

Nb = PCP(O(logn), 0(1)), ., NP is the clas of languages L for which

thce et probaslte plynomial e oacie protool ¥ that tses

Ol oin toses, makes (1) qurie, and. fo all £ 5, sntisis the

fallowing w0 condiions:

2 i1 € than ther ol A elativeto which Vo input = ceepls
ik probabily 1,

« 2 ¢ L, then, for every orci 4, V on input = relaive o 4 accspts
b probabiy e han 3. (AR

idio

Crescenz, and Silvestrs (BCS95], and Vereshehagin [Verod, and the open-
questions paper by Homaspoandra, Ramachandan, and Zimand [HRZ05)
Wo may think of an oracle B 4 & unitcost subroutine fo the setB. For
example, P (NPP) is the class of languages computable by deterministic
(nondeterministi) polynomial-ime Turing machines given unt-cos subros.
ines (1o, subroutines that roturn in one time unit) that test membership
in B We'may hink of such a subroutine as changing the ground rles of
computaion vnder which the machines operat,

We can also define what it moans to relativiae a complexity class not with
 single set but with another complexity cas
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polynomial-tme invertible the resson is not  engeh trick, but rather reflects
our inuitive notion of what nonimertibly should mesn.

Of course, having defined one-way functions, the natural question that
mmediately arise s whother ono-way functions exist This question is one
of the major open ises in complexity theory and Wors-case cryplography.
However, i isnot & new open ssue, but rather s fmilia sse in i
In paricular, Theorem 2.5 proves that this question i fact s  resatement
of the famous “P # NPT* question, and fo one-to-one functions it is  re-
satement of the queston °P 4 UP?

“The reason the one-to-one case i often studied is that it orresponds to
the case where each encrypted message has a most one possible decading—
an bviously desrable siuation.

Definition 2.4 e say a (possibly nontotal) function £ : 5 5* is one-
to-one f (v € Bz | £2) = )l < 1)

Theorem 2.5

1. One.tway functions exist if and only f P 4 NP.
2 Oneto-one one-uey functions ezit if and only if P 4 UP.

Proof We s prove part 1

Let s start with the “i" direction. Assume that P # NP. Let 4 be a
langusge in NP ~ P. So, it cortainy hokds that chee will exist sn NPTM
(nondeterministc polynomial-time Tring machine) N such that A = L(N).
We assume () is some standard pairing function (L. » bijection between
£ B and B that is polynormial-ime computable and polymomiak-ime
verdible). Consder the function (2, ) that outputs 0z i s an ac.
copting path of N(2) and that outputs 12 otherwise. Thisfuncton i clealy
polynomialtime computable and honest (the polynomial time computabity
and invertibilty of the paring functon block it from o sevetely disorting
lengihs a to destroy honesty). Suppose that  were polynomial-time invert-
ible via functon . Then we have that A € P, as shown by the following
algorithm. On any input , if Oy # domin(s) then reject y. Otherwise, nter-
Pret 9(0y) o pair and test whether is sccond component s an accepting
path of N(). I 20 then aceept and otherwise reject. However, as we aa-
sumed that A ¢ P, A € P s » contradiction, and s0 our supposiion that
s invertble must be incoreet. S, / i & polynomial-time computable, hot-
st function that s ot polynomia-time invertible. That i, i€ i & one-way
fanction.

We now urn <o the “only i direction of pat 1. Assume that one-way
functions xist and. that  is x one-way functon. Let p b the honesty poly-
nomil for , i the sense of Definiion 2.1. Consder the following language.

L= ((evpre)| Gl +lorel < p(1) A SGpre -3) = 2,

Whete “ denotes strng concstenation. Clatly, L € NP. Howeer, if L € P
we can nvert /by prefx search. That I, to vt = we sk st “(5,0) € L7
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A.3 Oracles and Relativized Worlds

Al i fo the best i the best o ol possibe words,
“Voltir, Candide

The seminal paper on oracles was by Baker, Gill,and Solovay [BGSTS. Since

then orscls have been discused extensively in the liters

e (se, Just 35

o few examples, the seminal paper by Bennets and Gill on random ora.
clos [BGSI], the insightful sl language/oracle conection work of Bovet,
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2.1 GEM: Characterizing the Existence of One-Way.
Functions

Informally put,  one-way functon i » unction that s essy to comput and
hard to invet. Howeve, to be abl to igorously characterize whether one-
way functions exist, we il have to formally pin down each of thec notions.
i adition, we will rquire  technical conditon known as “honesty.” wich s
eeded to ke the ntire discussion from being triviaized. Also, the functions
discussed i the definitions and theorems of hi section snd Sect 2.2 aze cne-
segument functions, that i, thei typo is  + B+ — £+, in Sect. 2.3, we will
extend the notion of one-way function to the caseof to-argument functions.

Definition 2.1 We say o (posibly nontotal) funcion f, s honest f
(3 polgnomiat )4y € range(/)(32)1 < als) A () = )

Definition 2.2 We say  (possbly ontotal) function 1 i polymommial time
ivertible f here is  (possibly nontotal) poinomial-time computable func.
tion g such that'

(¥ € range( 1)y € domain() A o(s) € domain() A £(o(4)) = 3}

Defintion 2.3 We say a (posiby nontotal) functon / is one-way if

L s polymomialtime compatable,
2.7 is ot polymomial-time invertible, and

3. 1 is honest
Let us oo why the honesty condition is matural and needed. Con-
ider the function (z) = Loeeeiosas(itiOD] that is, s string of

logloglog(max{z|, 4))] ones. This functions outputs are so short reltive
ot inputs that, Smply to have anough time (o write down an inverse,
any machine inverting f must. take trple exponential tme. Thus, / is
polynomialtime computable function that is ot polynomisl-ime invirtble.
However,this noninveribilty i simply an arifctof the dramatically ength.
docreasing nature of /. As this type of length trck noninvetiilty is of no
Inelp atall i cryptogaphy or complexity theory, we preclude it by putting
the honesty condition nto our deiiton of a ane-way function.

‘The honesty condition soys that esch lement y of the range of / has
some inverse whose length it most polynomially longer than the legth
of y- o, for honest functions , / does havo short nverses, and if 1 is not
TThe ©A" here s . it suble, since if € domain(s)” docs not hod, the

expresion “3(s) € domain(1) A 1(5()) 3 s'seven esningfl. In at,the

7 ey o cand (“conitonaland”)—an A ach tha. th righ-hand

e s vt only 1 he o hand 5 cvauates 10 irue” Howover, snce

ki type of thing,her and laher, i ce Fom contet, we e 7 % 00
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who ftzoduced the et set technique in the study of sparse complete set.
Somewhat more general resula than Theorer 1.10 are now known to hld,
due to work of Homer and Longpé [HLO4], Arvind e al. (AHH*3, and
Glter ((G1a00] s aso [GHOO]). Our presetation is based on the work of
Homer and Longpré [HLO4]

These esutsare artof  ich xploration of sparse completeness resits,
with respect to many compleity lassesand many typesof rections, that.
sarted with Berman'swork and that cotinues t thisday Numerous surveys
of eneral or specialised work on spare complete sts exist (M0 Mahte,
Mabss,You2 HOWS2,vMOS7 COBT GHOO|.

Regarding the reltivized evidence mentioned on page 18, Immerman
and Mabaney [IM80] have shown tht there ace reativized workis in which
NP ha sparse Turingchard sts yet P £ NP. Arvind et al. (AHH09] ex-
tended this o show that there are relatvized words n which NP has spare
Turing.completc sets yt the boolean hirarchy [CGH88] dos not colipse,
and Kadin (Kadso] showed that there re rlativiaed workd fn which NP
s spars Turng-complete setsyet some O langrages cannot be accepted
via P machines makin oflogn) sequential queries to NP.

Proposition 119 s due to Hemachandra [Hems0]. Theorem 1,14 is e
o Kadin (Kads9], Theorem 116 s dve to Karp and Lipton (KLS0], and we
prove it here using a nice,inutiv, alternae proof ine frst suggeted by
Hoperoft ([Hopat, see also (BBSS6]). The fact that RE((S| S i spase})
P/poly appears i o paper by Berman and Hartmanis [BHT7, where I is
attributed to Meyer Theorem 117 i due to Kobler and Watanabe (KW08],
e alo [KSr) based on work of Bahouty et . [BCKT94BCG+90]

Caf(Cai1] hs proven that the “symmeic alternaion® version of NP,
a class known 2 S [Can06 RS98], satisies S C ZPPT. In light of Sen.
upta’ obervation (s th discussion in [Cai1])tht a Hoperof-approach
proot of Theorem 116 n fact can be wsed (o conclude that 5 = PH, Caf's
Fesult saysthat Sengupta'scollapee to S} is a less as stong s, and poten-
tially s even stroner tha, tht of Theorem 116

The collapee of the trong exponential-ime hierarchy referred o near the
startofSet. 131 due to Hemachandra (Hem80], and the separation of snall-
space alternation hiceachies reerred to in Sect. 13 s due, ndependently
(s Wagd3), to Lidkiewics and Reischuk [LRO6.LR, von Brausmihl,
Gengler, and Retinger [VBGR,vBGRO4], a Glfrt (Ge4], The study
of time and space hierarchy theorems s  rich on, and dates back to the
pathbreaking work o Hartmanis, Lewi, and Stearns 1565,LSHGS SHLS].

Lemma 119 a the reul. stated in Pause to Ponder 10—and thus the
cquivalenc o pars 1 nd 3 of Theorem 118 are due to Book [Boorib]

The  Hartmani-Immerman-Soveiaon Encoding, aad . paticulac
Lemma 1.21 (and thus in efect the equivaience of parts 1 and 2 of
‘Theorem 1.18), was it employed by Hastmanis [ar3). The technique
was fother explored by Hastmani, Immerman, and Sewelson (HISSS, see
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> 0. Wite k i binacy,and lt « be the binasy of epresentation of k o the
right of, and not including is lefumost ome, viewed as & binazy sting. Call
this sring . (I k = 1, then w = ¢) Simlate N(u) (thus acoepting it and
nly f N accepts). Though N i an exponentialtime machine,the length
of w s logarithmic in the length of y, and thus the overall nondeterministic
runtime of this algorithmn i, fo some constant c, ot most O(24%7)

Thus, L/ € NP. However, by hypothesi this implies that L is in P. So,
let M be a dotermiistic polynomial ime machine such that L(M) = L', We
now decribe a determinisic exponentialtime algorithm for L. On input o,
computethesting b = 1097, and then simulate M (3, accepting i and only
1 M(3) ccepts. Sins M s a polynomial-time machine and [ < 21, the
‘b ofsteps that M (1) runs i (2%)° = 2. As the overhead of doing the
‘simalation and the costof btaining b fom a ace alsoat most exponential in
the inpur's engeh,cearly our agorichm for L is  deterministc exponentil.
time algorthm. Thus, L € E, which complees out proot. a

Finally, we must prove that if E = NE then all sparss NP sats i fact are
WP,

Pause to Ponder 1.20 As on casy warmap crercise, iy fo prove the sim-
pler claim: IfE ~ NE then all ally sets in NP ar in .

A skotch of the solution to Pause to Ponder 1.20is s follows, I L s  tally
sot in NP, then lt L' = {x](z i 0 r = i  bisary strng of nonaero lengeh
with 0 eading zeros) and 1% € L). It is no ard to see that L’ € NE.
Thus by assumption L' € E, and thus thero is & matural P agorithm for L,
namel, the lgorithm that on nput o rejects if o ¢ 1* and that if o = 1
wrtes k a8 0 if k = 0 ond otherwise as & n binary with no leading garos,
and then smulates the E lgorithm for L' on this sring. This concludes the
proof sketh for Pause to Ponder 1.0,

Howevor,rcal that we mst prove the stzonger resul that f B = NE then
al sparse NP sts are in P. Historcally, the result in Pause to Ponder 120
was ctablished many years before this sronger reslt. 1 ne looks carfully
At the proof just sketched for Pause to Ponder 120, it s clas that the
proof, even though it works well for the stated case (taly sets), breaks down
catastrophiclly for sprse sots. The reason it fal to apply o sparse sets is
that the proof s crucily using the fact that the length of  sting n a ally
s fully determines the string. n a sparse set there may be & polynomial
umber o stings at a given length, Thus the very, vory simple encoding
wsd in the proaf sketch o Pause to Ponder 1.0, namely,representin tally
srings by thee length, is not powerful enough to distinguish same-Jength
vings in 8 sprse set.

o do so, we will define a special “Hastmanis-Immermas-Sewelson on-
coding set” that crushesthe nformation o any sparso NP set into extzemely
bite-szed morsels rom which the mermbership ofthe et ca be easly econ.
Structed. I fact,the encoding manages to put al selal Information about &
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1.4 OPEN ISSUE: Does the Disjunctive Case Hold?

Theorem 1.7 shows that NP lackssparse <F-complete sets unless P = NP.
Do thisreul genralie o bounded-trth able, conjunetive truh table,
and digunctiv-truth-tabl reductions: nd <57
Theorem 110 already generalizes Theorem 17 o' the case of
adness. Using the lft set. technique i s lso easy (o generalize the resiit
o the cae of <% hardnoss: I NP has <7, -hard spars ses then P = NP.
‘The case of <5, hardnes semains vry much open.

Open Question 1,23 Can one provs I/NP has <, -hard sparse sets, hen
PINP?

However, it s known that proving the statement would be quite strong. In
pasticular, the following somewhat surprsing reltionship is known.

Proposition 124 Buery st that <, reduces (o a sparse set in fact
reduces o some sparee st

Thus, if one could. prove the result of Open Question 1.23, that resul would
immedistely imply Theorem 1.10.

1.5 Bibliographic Notes

Theorem 1.2 (which is often referred to as “Berman's Theoren) and
Corollry 13 are due to Berman [BerTS], and.the proof approch vields
the analog of these results not just for the tally sets but also for the
Prcapturable (CGHYS0] sets, e, the sets having sparse P supersts.
Theorem 1.4 and Corolary 15 ar due to Fortune [For79. Among,the re.
el that followe s0on ater the work of Fortune were advances by Ukko-
e [UKKSS], Yap [Yaps3), and Yesha [Yes3]

Theorems 17 (which is known s “Mahaney's Thoorem”) and
Theorem 1.9 are due to Mabaney (Mahs2]. The hisorical motivation fr his
‘work i sometimes forgotten, but is quite ntersting. The famous Berman-
Hartmanis Isomorphism Conjecture [BHTT], which conjecture that all NP-
complete sets are polynomial-tmo somorphic was relatively new at thetme.
Since no dense set (such s the NP-complte set SAT) can be polynomial.
ime isomorphic to any spare st the xistence of  sparse NP-complte set
‘would immediatly show the conjoture to be fase. Thus, Mahaney's work
was a way of showing the pointlessnoss of that line o attack on the Berman:
Hartmanis somorphism Conjocture (soe [HMSD]: i such . et exists, then

NP, in which case the Berman- Hartmanis somorphism Conjecture flls
tivilly anywy.

“Theorem 110 (which is often referred to s “the Ogivara-Watansbe.
Theorem") Is due to Ogivara and Watanabe (OWO1), seo also [HLOA),
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sparse NP sets lengeh n srings into length-O(logn) nstances o the encod-
g st—and yet maintan the easy decodabity tha i reqired to catablish
the following lerama.

Lemma 1.21 IfE = NE then NP — P contains no spase ses

Proof Lt L be some sparse NP sot, and assume that E = NE. Given that
L s sparse, ther s some polynomial,call t g, such that (V)L < ()]
Define the following encoding st:

L= oamik 12772 8

(hntehits] Grnza 2o € L™ <o 32 <
i 2e A the Jth bt of 5 is 1]

Since L € NP, it is clar that L' € NE. So by our assumption, L' € B

“We will now uso the fact that L' € E to give o P algorithm for L. Our
P alorithm for L works as follows. On input =, It n = [z]. Query L/ to
determine which of the folloving lst of polynomially many strings belong
to L's 0n#0,0n#1,04n#2,...,0n#q(n), where bere and later n the
proof the actual call to L' willfor the numerical arguments (the ', . ,
3, and K of the dofiniton of ) be coded as (and within L' will b docoded
ek from) binary strings. Given thes answers, st

o= mas(k| 0.2 < ln) A Ok € ).

Note that

L=, Now ask the fllowing question to L'

ingeh 1AL g p 142, .., ndepLn,
nbeh 2L A2, .. e 2in,

Uingohchl, Wndchopd...., infickotn

The answers to this st of polynomially many questions to L' give,bit by bit,
the ntire s of length n sringain L. I out input, = belongs (o this st ther
acoept, and otherwise ejct. Though L' € E, each of the polynomially many
queries asked to L/ (during the xecution ofthe algorithm just doscribed) is
flengthOllog). Thin et the gorhmis ded ol
time algoithm,

e 118 wa bt the ot o g e of eserch o evancd
transltions. Though the fllline of eseazchis beyond th scope f this book,
and i sl a subject of actve research and advanics, It s now known that the
query hlerarchy to NP itself hows crtain dowmward transltions of equality.
In particlar, the fllowing result says tht if one and two questions to I
yied the same power, then the polynomil hierarhy collpses not just o
PH bt n fac even to 3 iacl.

Theorem 1.22. Letk > 1. 5 = . 4 and only iP5V - pEEE1
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‘which most interestin real-world problems fall—what can be donc? One ap-
roach i, instead of dirctly tying to separate of collapes the clases,tolnk
the many open questions that exat within this ange. The philosophy behind
thi s very similar to th philosophy bekind NP-completeness theory. There,
we sl do not know whether NP-complete problems have polynomial-ime
lgorithms, However, we do know that, snce sll NP-complte problems ate
<Finerzeducible, they stnd o fall togther;ither ll have polynomiak time
orithms ot none do.

In the context of compleity classes between P and PSPACE, the goal
slong these lins would be to lnk together a5 many open questions 4s pos-
sible, ideally with % and orly if*lnks. It turns ot that i ofen i easy to
“upard transate” collapses, that s, to show that. if small clases colapse
then (semingly) larger classes collase, The truly difficult chalenge i to
“dowward translate” equaliio: to show that i arger lascs collape ther
(soemingly) smaller clases collaps.

In this section we study a famous downward translation that partially
links the P = NP question to the collpse of expoentia-ime clases. In
pasticular, wo will ask whathe the collape of determiniatic ond mondeter-
ministic exponential time implies any collape in the classes between P and
PSPACE. The resly blockbuster feslt to sk would b a theorem estab-
ising that E = NE = P = NP. However, it is an open question whether
thi can be established. What s known, and what we will here prove,
Tollowing theorem, which says chat the collapse of NE to E is cq
putting ito P all sparso ses in NP.

Theorem 118 The folouing are equialent.

LE=NE.
2 NP~ P contains no sarse st
3 NP P contains no tally sets.

Proof Part 2 clerly implies part 3, as very taly et is sparse. The
theorem folows immediately from this fact, and from Lemmas 119 and
Lemma 121 a

"The fllowing easy lemma shows that if i tall s xist in NP — P, then
NE cllapses to E.

Lemma 119 1 NP ~ P contains no tally sets then E = NE.

Proof Let L be some set in NE, and assume that NP — P contains 1o
tally sets. Let N bo  nondsterministic exponential-time machine such that
L(N) = L Deine L' = (1] (32 € L[k = (12)ue), where for sy string
(over {0,1}) 2 the expression () donote the nteger the srin reprosents
when viewed s & binary intoge, ., (1000}

Note that L' NP, snce the following algotithm accepts L'. On input ,
Ceect iy is not of the form ¥ for some k > 0. Otherwise y = 1* for some
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Known fact, whic s an ey eeris tht. we commend t the reader, that
RE((S] S i parse]) = P/poly)

Theorem 117 [f NP has sparse
Plpeiy) then PH = ZPP
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1.3 The Case of Merely Putting Sparse Sets in NP — P:
The Hartmanis-Immerman-Sewelson Encoding

In the previous sections we stutied whether classes such as NP had com-
plee or hard sparse ses with respect o various reductions. We know from
Theorem 17, for example, that ther is no NP-complto sparse set unless
P=NP.

In this section, we ask whether thereis any spars set in NP — P. Note
i partcula that we are not her asking whather there is any sparse et in
NP P that is NP-complete; by Theorem 17 the answer (o that question
i clealy *no" We hee are instead merely asking Whether any sparse et in
NP can be s0 complex s to lack deterministi polynomia-time algorithms

Belore approaching this question, let us motivate it from 4 quite dit
fent dirction. One centea goal of computational complexity theory is to
understand the relative power o diffeent complxity classs. For example,
s deterministc polynomial-time computation & stricly weaker notion than
nondeterministic polynomial time computation, that is P # NP? The idesl
reslts slong such lines are results collapsing complexity clsessor separating
compleity casss.

In fact, complsity theorists hav achieved a number of just such esults—
outright, nonrivial compleity cas collpses and sepacations. Fo example,
the srong exponential hieraechy—an exponentaltime analog of the poly
nomial Nierarchy—is known (o colapse, and for very smal space bounds &
“pace analog of the polynomial hierarchy is known to truly separate. The
famous time and space ierarchy theorems a1 provide unconditional sepe-
ation result. Unfortunataly, not one such reslt i known (o be useful i the
relm between P and PSPACE. It emains plasitl that P = PSPACE and
It remalas plausibl that P  PSPACE.

Given this disturbingly citca gap n our knowledgeof the power of com.
pleity classes between P and PSPACE cxacly the computational ream in
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